Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 29, 2017
Accepted December 1, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Rapid solvothermal synthesis of microporous UiO-66 particles for carbon dioxide capture
Sunyoung Bae
Nabilah Zaini1
Khairul Sozana Nor Kamarudin2
Kye Sang Yoo3
Jinsoo Kim†
Mohd Roslee Othman1†
Department of Chemical Engineering, Kyung Hee University, Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea 1School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia 2Chemical Process Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100 Wilayah Persekutuan Kuala Lumpur, Malaysia 3Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
jkim21@khu.ac.kr
Korean Journal of Chemical Engineering, March 2018, 35(3), 764-769(6), 10.1007/s11814-017-0334-4
Download PDF
Abstract
One of the important metal-organic frameworks known as UiO-66 has received significant attention recently due to its unprecedented chemical and thermal stability, with exceptionally high surface area. We prepared UiO-66 particles by a rapid solvothermal method which took only 30min at 120 °C to prepare, compared to the previous work which took longer than 12 h. Changing the precursor’s concentration ratio from 0.5 to 1.5 and reaction temperature from 80 °C to 140 °C resulted in the increase of UiO-66 particle size from 30 to 150 nm. The highest surface area of ca. 1,300m2/g was achieved at concentration ratio of 1 and temperature of 120 °C with bi-modal pore sizes of ca 0.60 nm and 1.25 nm, respectively. The UiO-66 particles with the highest surface area were then employed to capture carbon dioxide from a binary gas mixture. Results from CO2 adsorption capacity measurement using UiO-66 indicate that the adsorbent was capable of capturing 1.3611mmol/g at pressure of 1.5-1.7 bar and flowrate of 300 cm3/min.
References
Zhou HC, Long JR, Yaghi OM, Chem. Rev., 112(2), 673 (2012)
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341 (2013).
Murray LJ, Dinc M, Long JR, Chem. Soc. Rev., 38, 1294 (2009)
Sculley J, Yuan D, Zhou HC, Energy Environ. Sci., 4, 2721 (2011)
Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477 (2009)
An J, Geib SJ, Rosi NL, J. Am. Chem. Soc., 132(1), 38 (2010)
Bae YS, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT, Mirkin CA, Chem. Commun., 46, 3478 (2010)
Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT, J. Am. Chem. Soc., 133(15), 5652 (2011)
Ma L, Abney C, Lin W, Chem. Soc. Rev., 38, 1248 (2009)
Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT, Chem. Rev., 112(2), 1105 (2012)
Allendorf MD, Bauer CA, Bhakta RK, Houk RJT, Chem. Soc. Rev., 38, 1330 (2009)
Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
Schoenecker PM, Belancik GA, Grabicka BE, Walton KS, AIChE J., 59, 1255 (2012)
Biswas S, Van Der Voort P, Eur. J. Inorg. Chem., 2154 (2013).
DeCoste JB, Peterson GW, Jasuja H, Glover TG, Huang YG, Walton KS, J. Mater. Chem. A, 1, 5642 (2013)
Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP, Chem. Mater., 22, 6632 (2010)
Wu H, Yildirim T, Zhou W, J. Phys. Chem. Lett., 4, 925 (2013)
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P, Chem.-Eur. J., 17, 6643 (2011)
Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Fe´rey G, Vittadini A, Gross S, Serre C, Angew. Chem.-Int. Edit., 51, 9267 (2012)
Huang Y, Qin W, Li Z, Li Y, Dalton Trans., 41, 9283 (2012)
Birch DJS, Geddes CD, Chem. P. Lett., 320, 229 (2000)
Lee JW, Othman MR, Lee TG, Kim WS, Kim J, Microporous Mesoporous Mater., 116, 561 (2008)
Wiheeb AD, Helwani Z, Kim J, Othman MR, Sep. Purif. Rev., 45, 108 (2016)
Cao Y, Zhao Y, Lv Z, Song F, Zhong Q, J. Ind. Eng. Chem., 27, 102 (2015)
Abid HR, Tian HY, Ang HM, Tade MO, Buckley CE, Wang SB, Chem. Eng. J., 187, 415 (2012)
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341 (2013).
Murray LJ, Dinc M, Long JR, Chem. Soc. Rev., 38, 1294 (2009)
Sculley J, Yuan D, Zhou HC, Energy Environ. Sci., 4, 2721 (2011)
Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477 (2009)
An J, Geib SJ, Rosi NL, J. Am. Chem. Soc., 132(1), 38 (2010)
Bae YS, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT, Mirkin CA, Chem. Commun., 46, 3478 (2010)
Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT, J. Am. Chem. Soc., 133(15), 5652 (2011)
Ma L, Abney C, Lin W, Chem. Soc. Rev., 38, 1248 (2009)
Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT, Chem. Rev., 112(2), 1105 (2012)
Allendorf MD, Bauer CA, Bhakta RK, Houk RJT, Chem. Soc. Rev., 38, 1330 (2009)
Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
Schoenecker PM, Belancik GA, Grabicka BE, Walton KS, AIChE J., 59, 1255 (2012)
Biswas S, Van Der Voort P, Eur. J. Inorg. Chem., 2154 (2013).
DeCoste JB, Peterson GW, Jasuja H, Glover TG, Huang YG, Walton KS, J. Mater. Chem. A, 1, 5642 (2013)
Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP, Chem. Mater., 22, 6632 (2010)
Wu H, Yildirim T, Zhou W, J. Phys. Chem. Lett., 4, 925 (2013)
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P, Chem.-Eur. J., 17, 6643 (2011)
Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Fe´rey G, Vittadini A, Gross S, Serre C, Angew. Chem.-Int. Edit., 51, 9267 (2012)
Huang Y, Qin W, Li Z, Li Y, Dalton Trans., 41, 9283 (2012)
Birch DJS, Geddes CD, Chem. P. Lett., 320, 229 (2000)
Lee JW, Othman MR, Lee TG, Kim WS, Kim J, Microporous Mesoporous Mater., 116, 561 (2008)
Wiheeb AD, Helwani Z, Kim J, Othman MR, Sep. Purif. Rev., 45, 108 (2016)
Cao Y, Zhao Y, Lv Z, Song F, Zhong Q, J. Ind. Eng. Chem., 27, 102 (2015)
Abid HR, Tian HY, Ang HM, Tade MO, Buckley CE, Wang SB, Chem. Eng. J., 187, 415 (2012)