ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 3, 2017
Accepted October 11, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction

Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea 1Powder & Ceramics Division, Korea Institute of Materials Science, Changwon 51508, Korea
Korean Journal of Chemical Engineering, April 2018, 35(4), 1009-1018(10), 10.1007/s11814-017-0286-8
downloadDownload PDF

Abstract

This study attempted to obtain various products from carbon dioxide photoreduction using TiO2 catalysts doped with different transition metals of Mn, Fe, Co, Ni, Cu, and Zn (MTiO2). The band-gaps of MTiO2 catalysts decreased compared to pure TiO2, except for ZnTiO2. The intensities in photoluminescence curves, which can predict the recombination of excited electrons and holes, were weaker in MTiO2 catalysts than that of pure TiO2. The products obtained from carbon dioxide photoreduction were strongly related to the redox potential of carbon dioxide and the locations of band-gaps of MTiO2 catalysts. Methane was predominantly obtained in pure TiO2, FeTiO2, and NiTiO2 catalysts, and methanol and carbon monoxide were selectively produced in the CuTiO2 and ZnTiO2 catalysts, respectively. This result suggests that the desired product from carbon dioxide photoreduction can be selectively synthesized by doping certain metals.

References

Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275 (2017)
Cui Z, Fan J, Duan H, Zhang J, Xue Y, Tan Y, Korean J. Chem. Eng., 34(1), 29 (2017)
Huang H, Lin J, Zhu G, Weng Y, Wang X, Fu X, Long J, Angew. Chem.-Int. Edit., 55, 8314 (2016)
Xie S, Zhang Q, Liu G, Wang Y, Chem. Commun., 52, 35 (2016)
He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S, Energy Fuels, 3982, 28 (2014)
Nahar S, Zain MFM, Kadhum AAH, Hasan HA, Hasan MR, Materials, 629, 10 (2017)
Zalfani M, Hu ZY, Yu WB, Mahdouani M, Bourguiga R, Wu M, Li Y, Van Tendeloo G, Djaoued Y, Su BL, Appl. Catal. B: Environ., 205, 121 (2017)
Yang Y, Zhang T, Le L, Ruan X, Fang P, Pan C, Xiong R, Shi J, Wei J, Sci. Rep., 4, 7045 (2014)
Zhao H, Pan F, Li Y, J. Materiomics, 3, 17 (2017)
Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669 (2017)
Zhang M, Wu J, Lu DD, Yang J, Int. J. Photoenergy, 2013, 1 (2013)
Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
Pesci FM, Wang G, Klug DR, Li Y, Cowan AJ, J. Phys. Chem. C, 117, 25837 (2013)
Zhang K, Park JH, J. Phys. Chem. Lett., 8, 199 (2017)
Lee JH, Lee H, Kang M, Mater. Lett., 178, 316 (2016)
Park M, Kwak BS, Jo SW, Kang M, Energy Conv. Manag., 103, 431 (2015)
Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91 (2002)
Sakthivel S, Kisch H, ChemphysChem, 4, 487 (2003)
Yang K, Dai Y, Huang B, Whang MH, J. Phys. Chem. C, 113, 2624 (2009)
Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115 (2004)
Protti S, Albini A, Serpone N, Phys. Chem. Chem. Phys., 16, 19790 (2014)
Low J, Yu J, Ho W, J. Phys. Chem. Lett., 6, 4244 (2015)
Kim HS, Kim D, Kwak BS, Han GB, Um MH, Kang M, Chem. Eng. J., 243, 272 (2014)
Kwak BS, Kang M, Appl. Surf. Sci., 337, 138 (2015)
Ge J, Ping Y, Liu G, Qiao G, Kim EJ, Wang M, Mater. Lett., 181, 216 (2016)
Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mater., 117, 75 (2009)
Park GO, Shon JK, Kim YH, Kim JM, J. Nanosci. Nanotechnol., 15, 2441 (2015)
Deng X, Matranga C, J. Phys. Chem. C, 113, 11104 (2009)
Jiang ZJ, Jiang Z, Sci. Rep., 6, 27081 (2016)
Muruganandham M, Suri RPS, Sillanpaa M, Lee GJ, Wu JJ, Electron. Mater. Lett., 12, 693 (2016)
Wu F, Banerjee S, Li HF, Myung Y, Banerjee P, Langmuir, 32(18), 4485 (2016)
Tian H, Fan H, Dong G, Ma L, Ma J, RSC Adv., 6, 109091 (2016)
Fang J, Shi F, Bu J, Ding J, Xu S, Bao J, Ma Y, Jiang Z, Zhang W, Gao C, Huang W, J. Phys. Chem. C, 114, 7940 (2010)
Benkoula S, Sublemontier O, Patanen M, Nicolas C, Sirotti F, Naitabdi A, Gaie-Levrel F, Antonsson E, Aureau D, Ouf FX, Wada SI, Etcheberry A, Ueda K, Miron C, Sci. Rep., 5, 15088 (2015)
Sun H, Biedermann L, Bond TC, Geophys. Res. Lett., 34, 17813 (2007)
Pena-Flores J, Palomec-Garfias AF, Marquez-Beltran C, Sanchez-Mora E, Gomez-Barojas E, Perez-Rodriguez F, Nanoscale Res. Lett., 9, 499 (2014)
Chae J, Kang M, J. Power Sources, 196(8), 4143 (2011)
Santos RDS, Faria GA, Giles C, Leite CAP, Barbosa HDS, Arruda MAZ, Longo C, Appl. Mater. Interf., 4, 5555 (2012)
Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Gholami MR, J. Hazard. Mater., 172(2-3), 1573 (2009)
Hori Y, Modern Aspect Electrochem., 42, 89 (2008)
Chen JW, Falivene L, Caporaso L, Cavallo L, Chen EYX, J. Am. Chem. Soc., 138(16), 5321 (2016)
Saeidi S, Amin NAS, Rahimpour MR, J. CO2 Utilization, 5, 66 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로