ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 26, 2017
Accepted December 26, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation

School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea 1School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea 2Department of Material Science and Engineering, IIT Gandhi Nagar, Ahmedabad, India
vsvprabu@gmail.com
Korean Journal of Chemical Engineering, April 2018, 35(4), 1019-1025(7), 10.1007/s11814-017-0355-z
downloadDownload PDF

Abstract

Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g-1·h-1 and 1,130 μmol·g-1·h-1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.

References

Hayashi H, Nakamura T, Ebina T, J. Ceram. Soc. Jpn., 124(1), 74 (2016)
Sauvet AL, Baliteau S, Lopez C, Fabry P, J. Solid State Chem., 177, 4508 (2004)
Umek P, Korosec RC, Jancar B, Dominko R, Arcon D, J. Nanosci. Nanotechnol., 7, 3502 (2007)
Preda S, Rutar M, Umek P, Zaharescu M, Mater. Res. Bull., 71, 98 (2015)
Rudola A, Sharma N, Balaya P, Electrochem. Commun., 61, 10 (2015)
Anwer S, Huang Y, liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F, ACS Appl. Mater. Interfaces, 9(13), 11669 (2017)
Yu YT, Korean J. Chem. Eng., 20(5), 850 (2003)
Corcoran DJD, Tunstall DP, Irvine JTS, Solid State Ion., 136-137, 297 (2000)
Ogura S, Kohno M, Sato K, Inoue Y, J. Mater. Chem., 8, 2335 (1998)
Wei YS, Shen LB, Wang ZM, Yang WD, Zhu H, Liu HT, Int. J. Hydrog. Energy, 36(8), 5088 (2011)
Xu CY, Wu J, Zhang P, Hu SP, Cui JX, Wang ZQ, Huang YD, Zhen L, Cryst. Eng. Commun., 15, 3448 (2013)
Izawa H, Kikkawa S, Koizumi M, J. Phys. Chem., 86, 5023 (1982)
Zhang YP, Guo L, Yang SH, Chem. Commun., 50, 14029 (2014)
Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160 (1998)
Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, Rehman IU, Darr JA, Dalton Trans., 39, 711 (2010)
Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S, Nanoscale, 5, 594 (2013)
Deepak TH, Subash D, Anjusree GS, Pai KRN, Nair SV, Nair AS, ACS Sustainable Chem. Eng., 2(2), 2772 (2014)
Sujaridworakun P, Larpkiattaworn S, Saleepalin S, Wasanapiarnpong T, Adv. Powder Technol., 23(6), 752 (2012)
Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015)
Vattikuti SVP, Byon C, Reddy CV, Ravikumar RVSSN, RSC Adv., 5, 86675 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로