Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 13, 2017
Accepted December 30, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char
Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
kzhang@ncepu.edu.cn
Korean Journal of Chemical Engineering, April 2018, 35(4), 859-866(8), 10.1007/s11814-017-0357-x
Download PDF
Abstract
Gasification is generally considered as the most effective for low rank coal exploitation, and CO2 gasification offers the advantage of upgrading a greenhouse gas. Herein, the effects of alkali and alkaline earth metals on gasification of char derived from Zhundong low rank coal (R-char) were investigated using a thermo-gravimetric analyzer (TGA). Additionally, the characteristics of chars were analyzed by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the carbon conversion increases as the temperature and CO2 concentration increases. The R-char possesses a higher gasification rate and carbon conversion than the acid washing R-char (AR-char). It can be explained that the alkali and alkaline earth metals presence in coal char can remarkably facilitate the compound’s decomposition and make more char surface exposure to react during the gasification process. For the kinetic analysis, the volumetric reaction model reveals a proper description among the three models (VRM, RPM, SCM), and the R-char and AR-char presents a compensation effect in VRM. Besides, the detailed correlation of two chars is ln (k0)=0.10 EA-1.77 (R-char) and ln (k0)=0.10 EA-2.85 (AR-char), respectively.
Keywords
References
Wang SJ, Fang CL, Guan XL, Pang B, Ma HT, Appl. Energy, 136, 738 (2014)
Zhao BT, Tao WW, Zhong M, Su YX, Cui GM, Renew. Sust. Energ. Rev., 65, 44 (2016)
Li JB, Zhu MM, Zhang ZZ, Zhang K, Shen GQ, Zhang DK, Fuel Process. Technol., 149, 176 (2016)
Mingmin W, Jiansheng Z, Shouyu Z, Jinhu W, Guangxi Y, Korean J. Chem. Eng., 25(6), 1322 (2008)
Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331 (2016)
Kang TJ, Park HJ, Namkung H, Xu LH, Fan S, Kim HT, Korean J. Chem. Eng., 34(4), 1238 (2017)
Quyn DM, Wu HW, Li CZ, Fuel, 81(2), 143 (2002)
Wu HW, Quyn DM, Li CZ, Fuel, 81(8), 1033 (2002)
Ding L, Zhou ZJ, Guo QH, Huo W, Yu GS, Fuel, 142, 134 (2015)
Walker PL, Matsumoto S, Hanzawa T, Fuel, 62, 140 (1983)
Bai YH, Zhu SH, Luo K, Gao MQ, Yan LJ, Li F, Appl. Therm. Eng., 112, 156 (2017)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943 (2006)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1037 (2006)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1051 (2006)
Park HY, Ahn DH, Korean J. Chem. Eng., 24(1), 24 (2007)
Silbermann R, Gomez A, Gates I, Mahinpey N, Ind Eng Chem Res., 52, 14787 (2013)
Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
Sawettaporn S, Bunyakiat K, Kitiyanan B, Korean J. Chem. Eng., 26(4), 1009 (2009)
Mahinpey N, Gomez A, Chem. Eng. Sci., 148, 14 (2016)
Liu L, Guo QX, Chem. Rev., 101(3), 673 (2001)
Wu HW, Li XJ, Hayashi J, Chiba T, Li CZ, Fuel, 84(10), 1221 (2005)
Mui ELK, Cheung WH, Lee VKC, McKay G, Waste Manage., 30, 821 (2010)
Bond GC, Appl. Catal. A: Gen., 191(1-2), 23 (2000)
Wu L, Qiao Y, Gui B, Wang C, Xu JY, Yao H, Xu MH, Energy Fuels, 26(1), 112 (2012)
Liu S, Qiao Y, Lu ZL, Gui B, Wei MM, Yu Y, Xu MH, Energy Fuels, 28(3), 1911 (2014)
Qiao Y, Zhang LA, Binner E, Xu MH, Li CZ, Fuel, 89(11), 3381 (2010)
Sathe C, Pang YY, Li CZ, Energy Fuels, 13(3), 748 (1999)
Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
Huo W, Zhou ZJ, Wang FC, Wang YF, Yu GS, Fuel, 131, 59 (2014)
Skodras G, NenesG, Zafeiriou N, Appl. Therm. Eng., 74, 111 (2015)
De Micco G, Nasjleti A, Bohe AE, Fuel, 95(1), 537 (2012)
Rollinson AN, Karmakar MK, Chem. Eng. Sci., 128, 82 (2015)
Quyn DM, Wu HW, Hayashi J, Li CZ, Fuel, 82(5), 587 (2003)
Quyn DM, Wu HW, Bhattacharya SP, Li CZ, Fuel, 81(2), 151 (2002)
Lang RJ, Fuel, 65, 1324 (1986)
van Eyk PJ, Ashman PJ, Alwahabi ZT, Nathan GJ, Combust. Flame, 158(6), 1181 (2011)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943 (2006)
Clemens AH, Damiano LF, Matheson TW, Fuel, 77, 1017 (1988)
Kwon TW, Kim JR, Kim SD, Park WH, Fuel, 68, 416 (1989)
Aranda G, Grootjes AJ, van der Meijden CM, van der Drift A, Gupta DF, Sonde RR, Poojari S, Mitra CB, Fuel Process. Technol., 141, 16 (2016)
Di Blasi C, Prog. Energy Combust. Sci., 35(2), 121 (2009)
Yip K, Ng E, Li CZ, Hayashi JI, Wu HW, P. Combust. Inst., 33, 1755 (2011)
Zhao BT, Tao WW, Zhong M, Su YX, Cui GM, Renew. Sust. Energ. Rev., 65, 44 (2016)
Li JB, Zhu MM, Zhang ZZ, Zhang K, Shen GQ, Zhang DK, Fuel Process. Technol., 149, 176 (2016)
Mingmin W, Jiansheng Z, Shouyu Z, Jinhu W, Guangxi Y, Korean J. Chem. Eng., 25(6), 1322 (2008)
Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331 (2016)
Kang TJ, Park HJ, Namkung H, Xu LH, Fan S, Kim HT, Korean J. Chem. Eng., 34(4), 1238 (2017)
Quyn DM, Wu HW, Li CZ, Fuel, 81(2), 143 (2002)
Wu HW, Quyn DM, Li CZ, Fuel, 81(8), 1033 (2002)
Ding L, Zhou ZJ, Guo QH, Huo W, Yu GS, Fuel, 142, 134 (2015)
Walker PL, Matsumoto S, Hanzawa T, Fuel, 62, 140 (1983)
Bai YH, Zhu SH, Luo K, Gao MQ, Yan LJ, Li F, Appl. Therm. Eng., 112, 156 (2017)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943 (2006)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1037 (2006)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1051 (2006)
Park HY, Ahn DH, Korean J. Chem. Eng., 24(1), 24 (2007)
Silbermann R, Gomez A, Gates I, Mahinpey N, Ind Eng Chem Res., 52, 14787 (2013)
Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
Sawettaporn S, Bunyakiat K, Kitiyanan B, Korean J. Chem. Eng., 26(4), 1009 (2009)
Mahinpey N, Gomez A, Chem. Eng. Sci., 148, 14 (2016)
Liu L, Guo QX, Chem. Rev., 101(3), 673 (2001)
Wu HW, Li XJ, Hayashi J, Chiba T, Li CZ, Fuel, 84(10), 1221 (2005)
Mui ELK, Cheung WH, Lee VKC, McKay G, Waste Manage., 30, 821 (2010)
Bond GC, Appl. Catal. A: Gen., 191(1-2), 23 (2000)
Wu L, Qiao Y, Gui B, Wang C, Xu JY, Yao H, Xu MH, Energy Fuels, 26(1), 112 (2012)
Liu S, Qiao Y, Lu ZL, Gui B, Wei MM, Yu Y, Xu MH, Energy Fuels, 28(3), 1911 (2014)
Qiao Y, Zhang LA, Binner E, Xu MH, Li CZ, Fuel, 89(11), 3381 (2010)
Sathe C, Pang YY, Li CZ, Energy Fuels, 13(3), 748 (1999)
Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
Huo W, Zhou ZJ, Wang FC, Wang YF, Yu GS, Fuel, 131, 59 (2014)
Skodras G, NenesG, Zafeiriou N, Appl. Therm. Eng., 74, 111 (2015)
De Micco G, Nasjleti A, Bohe AE, Fuel, 95(1), 537 (2012)
Rollinson AN, Karmakar MK, Chem. Eng. Sci., 128, 82 (2015)
Quyn DM, Wu HW, Hayashi J, Li CZ, Fuel, 82(5), 587 (2003)
Quyn DM, Wu HW, Bhattacharya SP, Li CZ, Fuel, 81(2), 151 (2002)
Lang RJ, Fuel, 65, 1324 (1986)
van Eyk PJ, Ashman PJ, Alwahabi ZT, Nathan GJ, Combust. Flame, 158(6), 1181 (2011)
Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943 (2006)
Clemens AH, Damiano LF, Matheson TW, Fuel, 77, 1017 (1988)
Kwon TW, Kim JR, Kim SD, Park WH, Fuel, 68, 416 (1989)
Aranda G, Grootjes AJ, van der Meijden CM, van der Drift A, Gupta DF, Sonde RR, Poojari S, Mitra CB, Fuel Process. Technol., 141, 16 (2016)
Di Blasi C, Prog. Energy Combust. Sci., 35(2), 121 (2009)
Yip K, Ng E, Li CZ, Hayashi JI, Wu HW, P. Combust. Inst., 33, 1755 (2011)