ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 13, 2017
Accepted December 12, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics

1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S5B6, Canada 3Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
Korean Journal of Chemical Engineering, April 2018, 35(4), 900-908(9), 10.1007/s11814-017-0341-5
downloadDownload PDF

Abstract

Supercritical water oxidation (SCWO) of penicillin (PCN) was investigated under different operating conditions. The chemical oxygen demand (COD) removal rate could reach 99.4% at 400 °C, 24MPa, 1min and oxidation coefficient (OC) of 2. Experimental results showed that COD removal had no significant dependence on temperature and pressure variations. By contrast, COD removal could be significantly promoted with OC increasing from 0 to 2.0, but the effect was negligible as the OC further increased; similarly, longer residence time than a definite value seemed to contribute little to COD removal. Initial and deeper degradation pathways of penicillin were proposed based on the reactive force field (ReaxFF) molecular dynamics (MD) simulations. By tracing the evolution of intermediates, the migration routes of S and N during the SCWO process were obtained with H2S and NO2 produced as the corresponding products. Simulation results showed that SCW and oxidant not only accelerated the degradation by producing highly reactive radicals or molecules, but also participated in reactions by serving as H and O sources. Moreover, catalysis of water clusters in C-heteroatom bond cleavage was also observed.

References

Michael I, Rizzo L, McArdell CS, Manaia CM, Merli C, Schwartz T, Dagot C, Fatta-Kassinos D, Water Res., 47, 957 (2013)
Martinez JL, Environ. Pollut., 157, 2893 (2009)
Kummerer K, Chemosphere, 75, 417 (2009)
Ding C, He JZ, Appl. Microbiol. Biotechnol., 87(3), 925 (2010)
Cha JM, Yang S, Carlson KH, J. Chromatogr. A, 1115, 46 (2006)
Altmann J, Ruhl AS, Zietzschmann F, Jekel M, Water Res., 55, 185 (2014)
Pouretedal HR, Sadegh N, J. Water Process Eng., 1, 64 (2014)
Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Florez-Acosta OA, Torres-Palma RA, Ultrason. Sonochem., 31, 276 (2016)
Giraldo-Aguirre AL, Erazo-Erazo ED, Florez-Acosta OA, Serna-Galvis EA, Torres-Palma RA, J. Photochem. Photobiol. A-Chem., 311, 95 (2015)
Glaze WH, Kang JW, Chapin DH, Ozone Sci. Eng., 9, 335 (1987)
Serna-Galvis ES, Silva-Agredo J, Giraldo AL, Florez-Acosta OA, Torres-Palma RA, Sci. Total Environ., 541, 1431 (2016)
Villegas-Guzman P, Silva-Agredo J, Florez O, Giraldo-Aguirre AL, Pulgarin C, Torres-Palma RA, J. Environ. Manage., 190, 72 (2017)
Qian L, Wang S, Xu D, Guo Y, Tang X, Wang L, Water Res., 89, 118 (2016)
Sogut OO, Akgun M, J. Chem. Technol. Biotechnol., 85(5), 640 (2010)
Vadillo V, Garcia-Jarana MB, Sanchez-Oneto J, Portela JR, de la Ossa EJM, J. Chem. Technol. Biotechnol., 86(8), 1049 (2011)
Loppinet-Serani A, Aymonier C, Cansell F, J. Chem. Technol. Biotechnol., 85(5), 583 (2010)
Kayan B, Gozmen B, J. Hazard. Mater., 201, 100 (2012)
Islam MM, Zou C, van Duin ACT, Raman S, Phys. Chem. Chem. Phys., 18, 761 (2016)
Takahashi H, Hisaoka S, Nitta T, Chem. Phys. Lett., 363(1-2), 80 (2002)
Zhang Y, Zhang J, Zhao L, Sheng C, Energy Fuels, 24, 95 (2010)
Honma T, Inomata H, J. Supercrit. Fluids, 90, 1 (2014)
van Duin ACT, Dasgupta S, Lorant F, Goddard WA, J. Phys. Chem. A, 105(41), 9396 (2001)
Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J, FRONT. Chem. Sci. Eng., 1, 16 (2016)
Zhang JL, Weng XX, Han Y, Li W, Cheng JY, Gan ZX, Gu JJ, Fuel, 108, 682 (2013)
Zhang JL, Gu JT, Han Y, Li W, Gan ZX, Gu JJ, Ind. Eng. Chem. Res., 54(4), 1251 (2015)
Zhang J, Gu J, Han Y, Li W, Gan Z, Gu J, J. Mol. Model., 21, 54 (2015)
Jiang D, Wang Y, Zhang M, Zhang J, Li W, Han Y, Int. J. Hydrog. Energy, 15, 9667 (2017)
Yabalak E, Dondas HA, Gizir AM, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 3, 210 (2017)
Salmon E, van Duin ACT, Lorant F, Marquaire PM, Goddard WA, Org. Geochem, 40, 1195 (2009)
Chen B, Wei XY, Yang ZS, Liu C, Fan X, Qing Y, Zong ZM, Energy Fuels, 26(2), 984 (2012)
Wang HY, Stern HAG, Chakraborty D, Bai H, DiFilippo V, Goela JS, Pickering MA, Gale JD, Ind. Eng. Chem. Res., 52(44), 15270 (2013)
Savage PE, Chem. Rev., 99(2), 603 (1999)
Wang SZ, Guo Y, Wang LA, Wang YZ, Xu DH, Ma HH, Fuel Process. Technol., 92(3), 291 (2011)
Gopalan S, Savage PE, AIChE J., 41(8), 1864 (1995)
Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201 (1997)
Li L, Chen P, Gloyna EF, AIChE J., 37, 1687 (1991)
Lee DS, Gloyna EF, Li L, J. Supercrit. Fluids, 3, 249 (1990)
Segond N, Matsumura Y, Yamamoto K, Ind. Eng. Chem. Res., 41(24), 6020 (2002)
Akiya N, Savage PE, Chem. Rev., 102(8), 2725 (2002)
Gong WJ, Li F, Xi DL, Water Environ. Res., 80, 186 (2008)
Gopalan S, Savage PE, AIChE J., 41(8), 1864 (1995)
DiNaro JL, Tester JW, Howard JB, Swallow KC, AIChE J., 46(11), 2274 (2000)
Rice SF, Croiset E, Ind. Eng. Chem. Res., 40(1), 86 (2001)
Savage PE, Yu JL, Stylski N, Brock EE, J. Supercrit. Fluids, 12(2), 141 (1998)
Ma H, Ma J, J. Chem. Phys., 135, 054504 (2011)
Zhang J, Weng X, Han Y, Li W, Gan Z, Gu J, J. Energy Chem., 22, 459 (2013)
Sema-Galvis EA, Silva-Agredo J, Giraldo AL, Florez OA, Torres-Palma RA, Chem. Eng. J., 284, 953 (2016)
Shukla M, Susa A, Miyoshi A, Koshi M, J. Phys. Chem. A, 112(11), 2362 (2008)
Comandini A, Malewicki T, Brezinsky K, J. Phys. Chem. A, 16, 2409 (2012)
Gong Y, Guo Y, Wang S, Song W, Water Res., 100, 116 (2016)
Fujii T, Hayashi R, Kawasaki S, Suzuki A, Oshima Y, J. Supercrit. Fluids, 58(1), 142 (2011)
Kida Y, Class CA, Concepcion AJ, Timko MT, Green WH, Phys. Chem. Chem. Phys., 16, 9220 (2014)
Meng N, Jiang DD, Liu Y, Gao ZY, Cao YQ, Zhang JL, Gu JJ, Han Y, Fuel, 186, 394 (2016)
Wang J, He F, Li Y, Sun H, RSC Adv., 6, 93260 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로