ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 31, 2017
Accepted December 12, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Plantwide design for high-purity formic acid reactive distillation process with dividing wall column and external heat integration arrangements

School of Chemical Engineering, Yeungnam University, Dae-dong 38541, Korea 1Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Korean Journal of Chemical Engineering, April 2018, 35(4), 926-940(15), 10.1007/s11814-017-0342-4
downloadDownload PDF

Abstract

We assessed eight configurations by implementing a dividing wall column (DWC) arrangement and an external heat integration (HI) arrangement for the reduction of energy consumption in the high-purity formic acid (FA) production process. At first, a patented high-purity FA production configuration was adopted and several main process variables were optimized. The optimal configuration was considered the base case for further investigation. The DWC arrangement was applied in the base case configuration to overcome the remixing phenomenon. Next, the external HI arrangement was implemented in those configurations. The simulation results showed that the non-reactive upper DWC between columns C2 and C3 with the HI configuration was the best configuration that provided 46.9% energy saving compared to base case configuration.

References

Ihs.com, 2013, Formic acid chemical economics handbook, [online] Available from: http://www.ihs.com/products/formic-acid-chemical-economics-handbook.html (Accessed 26.06.16).
Marketsandmarkets.com, 2016, Formic acid market worth $618,808.7 Thousand by 2019, [Online] Available from: http://www.marketsandmarkets.com/PressReleases/formic-acid.asp (Accessed 26.06.2016).
Leonard JD, US Patent, 4,299,981 (1981).
Huang HP, Lee MJ, Lee HY, Chen JH, US Patent, 0123157 A1 (2012).
Tsouris C, Porcelli JV, Chem. Eng. Prog., 99(10), 50 (2003)
Novita FJ, Lee HY, Lee M, Chem. Eng. Process., 97, 144 (2015)
Sharma MM, Mahajani SM, in Reactive distillation: status and future directions, K. Sundmacher, A. Kienle Eds., Wiley-VCH Verlag CmbH & Co., KGaA (2002).
Yoo H, Binns M, Jang MG, Cho H, Kim JK, Korean J. Chem. Eng., 33(2), 405 (2016)
Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
Kim SY, Kim DM, Lee B, Korean J. Chem. Eng., 34(5), 1310 (2017)
Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 45(25), 8454 (2006)
Schultz MA, Stewart DG, Harris JM, Rosenblum ST, Shakur MS, O’Brien DE, Reactions and Separations (2002),https:/www.cepmagazine.org.
Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709 (2007)
Bumbac G, Plesu AE, Plesu V, 17th European symposium on computer aided process engineering-ESCAPE17 (2007).
Noyita FJ, Lee HY, Lee M, Ind. Eng. Chem. Res., 56(24), 7037 (2017)
Luyben W, Distillation design and control using aspen simulation, Wiley, Hoboken, NJ (2006).
Bai L, Zhao YL, Hu YQ, Zhong B, Peng SY, J. Nat. Gas Chem., 5, 229 (1996)
Wang CX, J. Chem. Eng., 6, 898 (2006)
Polak J, Lu BCY, J. Chem. Thermodyn., 4, 469 (1972)
Reichl A, Daiminger U, Schmidt A, Davies M, Hoffmann U, Brinkmeier C, Reder C, Marquardt W, Fluid Phase Equilib., 153(1), 113 (1998)
Zeng J, Zhu ZY, Hu WL, Nat. Gas Chem. Ind., 6, 56 (2000)
Ito T, Yoshida F, J. Chem. Eng. Data, 8, 315 (1963)
Popken T, Gotze L, Gmehling J, Ind. Eng. Chem. Res., 39(7), 2601 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로