ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 10, 2017
Accepted September 20, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM)

Department of Energy & Chemical Engineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Korea 1Global Engineering Division, GS Engineering & Construction, 33, Jong-ro, Jongno-gu, Seoul 03159, Korea 2Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Korea
Korean Journal of Chemical Engineering, April 2018, 35(4), 941-955(15), 10.1007/s11814-017-0261-4
downloadDownload PDF

Abstract

Energy source diversification through development of coalbed methane (CBM) resources is one of the key strategies to make a country less dependent on simple energy resources (e.g., crude oil, natural gas, nuclear energy etc.). Especially, enhanced coalbed methane (ECBM) technology can be expected to secure the resources as well as environmental benefits. However, the raw CBM gas obtained from CO2 ECBM contains a considerable amount of CO2, and the CO2 content increases depending on the operation time of the facility. Considering the changes of the CBM composition, we developed process simulations of the CBM separation & purification processes based on the amine absorption to meet the design specifications (CH4 purity of product stream: 99%, CH4 recovery rate: 99%) with different CBM feed gas conditions. Using the developed simulation model, we performed an economic evaluation using unit methane production cost (MPC) considering coal-swelling types and facility operation time, and established an operatio strategy under different natural gas market scenarios.

References

Mohr SH, Evans GM, Energy Policy, 38(1), 265 (2010)
Midilli A, Ay M, Dincer I, Rosen M, Renew. Sust. Energ. Rev., 9(3), 255 (2005)
Liang B, Sun W, Qi Q, Li H, Int. J. Min. Sci. Technol., 22(6), 891 (2012)
Jenkins C, Boyer C, J. Pet. Technol., 60(2), 92 (2008)
Aminian K, Ameri S, J. Nat. Gas Sci. Eng., 1(1-2), 25 (2009)
Luo DK, Dai YJ, Energy Policy, 37(10), 3883 (2009)
Kim K, Sung W, Han J, J. Korean Inst. Gas, 17(2), 36 (2013)
Al-Jubori A, Johnston S, Boyer C, Lambert S, Bustos O, Pashin J, Oilfield Rev., 21, 4 (2009)
Sinayuc C, Shi J, Imrie C, Syed SA, Korre A, Durucan S, Energy Procedia, 4, 2150 (2011)
Sayyafzadeh M, Keshavarz A, Alias A, Dong K, Manser M, J. Nat. Gas Sci. Eng., 27(2), 1205 (2015)
Fulton P, Parente C, Rogers B, Shah N, Reznik A, A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection (1980).
Ranathunga AS, Perera MSA, Ranjith PG, Wei CH, Fuel, 189, 391 (2017)
Zahid U, Lim Y, Jung J, Han C, Korean J. Chem. Eng., 28(3), 674 (2011)
Liu C, Dang Y, Zhou Y, Liu J, Sun Y, Su W, Adsorpt., 18(3-4), 321 (2012)
Ko D, Ind. Eng. Chem. Res., 55(4), 1013 (2016)
Robertson E, Idaho National Laboratory, INL/EXT-08-13816, (2007).
Zhang G, Fan S, Hua B, Wang Y, Huang T, Xie Y, J. Energy Chem., 22(3), 533 (2013)
Wei XR, Massarotto P, Wang G, Rudolph V, Golding SD, Fuel, 89(5), 1110 (2010)
Zhou F, Hou W, Allinson G, Wu J, Wang J, Cinar Y, Int. J. Greenhouse Gas Control, 19, 26 (2013)
First EL, Hasan MMF, Floudas CA, AIChE J., 60(5), 1767 (2014)
Day S, Fry R, Sakurovs R, Int. J. Coal Geol., 74(1), 41 (2008)
Chen Z, Pan Z, Liu J, Connell L, Elsworth D, Int. J. Greenhouse Gas Control, 5(5), 1284 (2011)
Xie J, Gao M, Yu B, Zhang R, Jin W, Geomech. Geophys. Geoenergy and Geo-resour., 1(1-2), 15 (2015)
Karacan CO, Int. J. Coal Geol., 72(3-4), 209 (2007)
Karacan S, Karacan F, Sci. Technol. Online, 2(2) (2012)
Park S, Song HJ, Lee MG, Park J, Korean J. Chem. Eng., 31(1), 125 (2014)
He TB, Ju YL, Appl. Energy, 115, 17 (2014)
Nie W, Peng SJ, Xu J, Liu LR, Wang G, Geng JB, Sci. World J., 2014(1), Article ID 185608 (2014).
Mu F, Zhong W, Zhao X, Che C, Chen Y, Zhu J, Nat. Gas Ind. B, 2(4), 383 (2015)
DOE U, Powder River Basin Coalbed Methane Development and Produced Water Management Study. US Department of Energy (2002).
Guide APU, Aspen Technology. Inc. (2009).
Kim S, Ko D, Row S, Kim J, Chem. Eng. Res. Des., 115, 230 (2016)
Mores P, Rodriguez N, Scenna N, Mussati S, Int. J. Greenhouse Gas Control, 10, 148 (2012)
Hwang H, Han JH, Lee IB, Ind. Eng. Chem. Res., 52(51), 18334 (2013)
Kim J, Miller JE, Maravelias CT, Stechel EB, Appl. Energy, 111, 1089 (2013)
De Graaff J, Zuazo V, Jones N, Fleskens L, J. Environ. Manage., 89(2), 129 (2008)
Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073 (2003)
Wong S, Macdonald D, Andrei S, Gunter W, Deng X, Law D, Int. J. Coal Geol., 81(3-4), 280 (2010)
Weijermars R, Appl. Energy, 106, 100 (2013)
US Energy Information Administration. Natural gas monthly 2016. http://www.eia.gov/ 2016 (2016).
Haeffele N, The Feasibility and the Economic Viability of Shipping LNG via the Northern Sea Route 2013.
Egging R, Holz F, Gabriel SA, Energy, 35(10), 4016 (2010)
Kim J, Henao C, Johnson T, Dedrick D, Miller J, Stechel E, Maravelias C, Energy Environ. Sci., 4, 3122 (2011)
Fleten S, Nasakkala E, Energy Econ., 32, 805 (2010)
Naims H, Environ. Sci. Pollut. Res., 23(22), 22226 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로