Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 15, 2017
Accepted December 14, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Thin film graphene oxide membrane: Challenges and gas separation potential
Department of Petroleum and Chemical Engineering, Sharif University of Technology, Tehran, Iran 1Material and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
j_karimi@alum.sharif.edu, jvkarimi@aeoi.org.ir
Korean Journal of Chemical Engineering, May 2018, 35(5), 1174-1184(11), 10.1007/s11814-017-0339-z
Download PDF
Abstract
Graphene oxide membranes were prepared by vacuum and pressurized ultrafiltration methods on the 12% modified Polyacrylonitrile (12mPAN) substrate to specify challenges, salient features, future directions, and potential of GO membrane for separation fields using characterization techniques and gas separation test (studied gases are CO2, He and N2), which is an efficient tool for better understanding of GO membrane behavior. GO membrane structure was examined over a wide range of parameters, such as pore size range of substrate and its surface properties, pH of GO dispersion, GO content, synthesis pressure, operating pressure and temperature. The results show that the GO content does not hold a linear relationship with the permeance and selectivity. Film thickness, aggregates, synthesis pressure defects and interlayer spacing have significant effects on the gas separation performance of GO membranes which originate from the synthesis method and its conditions.
References
Ha H, John EC, Korean J. Chem. Eng., 35, 1 (2017)
Li X, Li F, Fang L, Korean J. Chem. Eng., 32(12), 2449 (2015)
Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265 (2014)
Nguyen-Phan TD, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW, Korean J. Chem. Eng., 28(12), 2236 (2011)
Baskey M, Ghosh S, Korean J. Chem. Eng., 34(7), 2079 (2017)
Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM, ACS Appl. Mater. Interfaces, 3, 1821 (2011)
Choi W, Choi J, Bang J, Lee JH, ACS Appl. Mater. Interfaces, 5, 12510 (2013)
Safarpour M, Khataee A, Vatanpour V, J. Membr. Sci., 489, 43 (2015)
Chae HR, Lee J, Lee CH, Kim IC, Park PK, J. Membr. Sci., 483, 128 (2015)
Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK, Science, 335(6067), 442 (2012)
Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR, Science, 343(6172), 752 (2014)
Vatsha B, Ngila JC, Moutloali R, J. Membr. Sep. Technol., 4, 98 (2015)
Smith ZP, Freeman BD, Angewandte Chemie International Ed., 53, 10286 (2014)
Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674 (2016)
Tang YP, Paul DR, Chung TS, J. Membr. Sci., 458, 199 (2014)
Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB, Science, 342(6154), 91 (2013)
Li H, Song ZN, Zhang XJ, Huang Y, Li SG, Mao YT, Ploehn HJ, Bao Y, Yu M, Science, 342(6154), 95 (2013)
Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H, ACS Nano, 7, 428 (2012)
Zhao X, Su Y, Liu Y, Li Y, Jiang Z, ACS Appl. Mater. Interfaces, 8, 8247 (2016)
Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K, ACS Appl. Mater. Interfaces, 8, 6211 (2016)
Sun PZ, Wang KL, Zhu HW, Adv. Mater., 28(12), 2287 (2016)
Liu G, Jin W, Xu N, Angewandte Chemie International Ed., 55, 13384 (2016)
Cote LJ, Kim F, Huang J, J. Am. Chem. Soc., 131, 1043 (2008)
Mulder M, Basic principle of membrane technology, 2nd Ed., Kluwer Academic (1997).
Yampol'skii YP, Freeman B, Membrane gas separation, Wiley Online Library, 34 (2010).
Albrecht E, Baum G, Bellunato T, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 510, 262 (2003).
Li X, Li F, Fang L, Korean J. Chem. Eng., 32(12), 2449 (2015)
Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265 (2014)
Nguyen-Phan TD, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW, Korean J. Chem. Eng., 28(12), 2236 (2011)
Baskey M, Ghosh S, Korean J. Chem. Eng., 34(7), 2079 (2017)
Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM, ACS Appl. Mater. Interfaces, 3, 1821 (2011)
Choi W, Choi J, Bang J, Lee JH, ACS Appl. Mater. Interfaces, 5, 12510 (2013)
Safarpour M, Khataee A, Vatanpour V, J. Membr. Sci., 489, 43 (2015)
Chae HR, Lee J, Lee CH, Kim IC, Park PK, J. Membr. Sci., 483, 128 (2015)
Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK, Science, 335(6067), 442 (2012)
Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR, Science, 343(6172), 752 (2014)
Vatsha B, Ngila JC, Moutloali R, J. Membr. Sep. Technol., 4, 98 (2015)
Smith ZP, Freeman BD, Angewandte Chemie International Ed., 53, 10286 (2014)
Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674 (2016)
Tang YP, Paul DR, Chung TS, J. Membr. Sci., 458, 199 (2014)
Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB, Science, 342(6154), 91 (2013)
Li H, Song ZN, Zhang XJ, Huang Y, Li SG, Mao YT, Ploehn HJ, Bao Y, Yu M, Science, 342(6154), 95 (2013)
Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H, ACS Nano, 7, 428 (2012)
Zhao X, Su Y, Liu Y, Li Y, Jiang Z, ACS Appl. Mater. Interfaces, 8, 8247 (2016)
Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K, ACS Appl. Mater. Interfaces, 8, 6211 (2016)
Sun PZ, Wang KL, Zhu HW, Adv. Mater., 28(12), 2287 (2016)
Liu G, Jin W, Xu N, Angewandte Chemie International Ed., 55, 13384 (2016)
Cote LJ, Kim F, Huang J, J. Am. Chem. Soc., 131, 1043 (2008)
Mulder M, Basic principle of membrane technology, 2nd Ed., Kluwer Academic (1997).
Yampol'skii YP, Freeman B, Membrane gas separation, Wiley Online Library, 34 (2010).
Albrecht E, Baum G, Bellunato T, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 510, 262 (2003).