ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 16, 2017
Accepted February 5, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A simulation study on selection of optimized process for azeotropic separation of methanol and benzene: Internal heat integration and economic analysis

Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04623, Korea
sjpark@dongguk.edu
Korean Journal of Chemical Engineering, May 2018, 35(5), 1185-1194(10), 10.1007/s11814-018-0021-0
downloadDownload PDF

Abstract

This work provides an insight into the separation of azeotropic mixtures by using two different techniques: pressure swing distillation and extractive distillation. Both methods are used to separate an azeotropic mixture of methanol and benzene. This mixture exhibits a minimum boiling azeotrope at temperature 57.97 °C and pressure 1 bar with mole fractions of 0.61 and 0.39 for methanol and benzene, respectively. However, the azeotropic point in methanol and benzene mixture is pressure sensitive, which can be shifted by changing pressure with a process called pressure swing distillation. Extractive distillation with suitable solvent is another method to separate such kind of mixture. Both methods are rigorously simulated and optimized for minimum heat duties. Internal heat integration is applied too for increasing energy efficiency. New optimization techniques are carried out with process simulator Aspen HYSYS V8.4 and results reveal the best method for separation of methanol and benzene azeotropic mixture.

References

Soave G, Feliu JA, Appl. Therm. Eng., 22(8), 889 (2002)
Engelien HK, Skogestad S, Chem. Eng. Process., 44(8), 819 (2005)
Mandal S, Pangarkar VG, J. Membr. Sci., 201(1-2), 175 (2002)
Kotai B, Lang P, Modla G, Chem. Eng. Sci., 62(23), 6816 (2007)
Luyben WL, Chem. Eng. Res. Des., 106, 253 (2016)
Laroche L, Andersen HW, Morari M, Bekiaris N, Canadian J. Chem. Eng., 69(6), 1302 (1991)
Shirsat SP, Dawande SD, Kakade SS, Korean J. Chem. Eng., 12(30), 2163 (2013)
Lladosa E, Monton JB, Burguet MC, Munoz R, Fluid Phase Equilib., 255(1), 62 (2007)
De Figueiredo MF, Brito KD, Ramos WB, Vasconcelos LGS, Brito RP, Chem. Eng. Commun., 202(9), 1191 (2015)
Doherty MF, Malone MF, Conceptual design of distillation systems, McGraw-Hill Science/Engineering/Math (2001).
Phimister JR, Seider WD, Ind. Eng. Chem. Res., 39(1), 122 (2000)
Qasim F, Shin JS, Cho SJ, Park SJ, Sep. Sci. Technol., 51(2), 316 (2016)
Repke JU, Klein A, Bogle D, Wozny G, Chem. Eng. Res. Des., 85(A4), 492 (2007)
Modla G, Lang P, Denes F, Chem. Eng. Sci., 65(2), 870 (2010)
Modla G, Ind. Eng. Chem. Res., 50(13), 8204 (2011)
Modla G, Computers Chem. Eng., 35(11), 2401 (2011)
Knapp JP, Doherty MF, Ind. Eng. Chem. Res., 31(1), 346 (1992)
Luyben WL, Ind. Eng. Chem. Res., 47(8), 2696 (2008)
Mulia-Soto JF, Flores-Tlacuahuac A, Comput. Chem. Eng., 35(8), 1532 (2011)
Modla G, Lang P, Chem. Eng. Sci., 63(11), 2856 (2008)
Modla G, Lang P, Ind. Eng. Chem. Res., 49(8), 3785 (2010)
Luyben WL, Ind. Eng. Chem. Res., 44(15), 5715 (2005)
Fulgueras AM, Poudel J, Kim DS, Cho J, Korean J. Chem. Eng., 33(1), 46 (2016)
Sun Q, Pan C, Yan X, Korean J. Chem. Eng., 30(3), 518 (2013)
Luyben WL, Comput. Chem. Eng., 50, 1 (2013)
RM, Wa W, Ind. Eng. Chem., 31, 2079 (1939)
Wang Y, Cui P, Ma Y, Zhang ZJ, Chem. Technol. Biotechnol., 90(8), 1463 (2015)
Luyben WL, Chien IL, Design and control of distillation systems for separating azeotropes, John Wiley & Sons (2011).
Yuan S, Yang W, Yin H, Chen ZJ, Chem. Technol. Biotechnol., 88(8), 1523 (2013)
Seiler M, Arlt W, Kautz H, Frey H, Fluid Phase Equilib., 201(2), 359 (2002)
Forehand J, Dooly G, Moldoveanu S, J. Chromatogr. A, 898, 111 (2000)
Yeh AI, Berg L, Warren KJ, Chem. Eng. Commun., 68(1), 69 (1988)
Knapp JP, Doherty MF, AIChE J., 40(2), 243 (1994)
Zhang Z, Liu L, Li W, Chen L, CIESC J., 9, 023 (2011)
Lang P, Yatim H, Moszkowicz P, Otterbein M, Comput. Chem. Eng., 18(11-12), 1057 (1994)
Langston P, Hilal N, Shingfield S, Webb S, Chem. Eng. Process., 44(3), 345 (2005)
Lei ZG, Wang HY, Zhou RQ, Duan ZT, Chem. Eng. J., 87(2), 149 (2002)
Black C, Ditsler D, Dehydration of aqueous ethanol mixtures by extractive distillation (1972).
Hilal N, Yousef G, Langston P, Chem. Eng. Process., 41(8), 673 (2002)
Olujic Z, Fakhri F, de Rijke A, de Graauw J, Jansens PJ, J. Chem. Technol. Biotechnol., 78(2-3), 241 (2003)
Mah RS, Nicholas J, Wodnik RB, AIChE J., 23(5), 651 (1977)
Schmal JP, Van der Kooi HJ, De Rijke A, Olujic Z, Jansens PJ, Chem. Eng. Res. Des., 84(A5), 374 (2006)
Liu G, Chen Z, Huang K, Shi Z, Chen H, Wang S, Asia.Pacific J. Chem. Eng., 6(3), 327 (2011)
Huang K, Shan L, Zhu Q, Qian J, Appl. Therm. Eng., 28(8), 923 (2008)
Horiuchi K, Yanagimoto K, Kataoka K, Nakaiwa M, Iwakabe K, Matsuda K, J. Chem. Eng. Jpn., 41(8), 771 (2008)
D'amore MB, Manzer LE, Miller ES, Knapp JP, Process for making isooctenes from dry 1-butanol, Google Patents (2015).
Michael F, Jeffrey P, Distillation, Azeotropic and Extractive, Ruthven, DM (Ed.) (1997).
Renon H, Prausnitz JM, AIChE J., 14(1), 135 (1968)
Scatchard G, Ticknor LB, J. Am. Chem. Soc., 74(15), 3724 (1952)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로