Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 24, 2017
Accepted February 5, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Production of high purity rare earth mixture from iron-rich spent fluid catalytic cracking (FCC) catalyst using acid leaching and two-step solvent extraction process
Le-Phuc Nguyen1†
Yen Thi Hai Pham1
Phuong Thuy Ngo1
Tri Van Tran1
Loc Vinh Tran1 2
Nam Thi Hoai Le2
Luong Huu Nguyen1
Tung Thanh Dang1
Duc Anh Nguyen1
Marco Wenzel3
David Hartmann3
Karsten Gloe3
Jan J. Weigand3†
Klaus Kretschmer4
1Catalysis Research Department, Vietnam Petroleum Institute, Saigon Hi-Tech Park, District 9, Ho Chi Minh City, Vietnam 2Vietnam Academy of Science and Technology, Vietnam 3Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany 4Delta Engineering & Chemistry GmbH, 14476 Groβglienicke, Germany
Korean Journal of Chemical Engineering, May 2018, 35(5), 1195-1202(8), 10.1007/s11814-018-0022-z
Download PDF
Abstract
Acid leaching and a two-step solvent extraction procedure were developed to produce high purity mixture of La and Ce from iron-rich spent FCC catalyst discharged from Dzung Quat refinery (Vietnam). Acid leaching of the spent catalyst with 2M HNO3 and a solid-to-liquid ratio of 1/3 at 80 °C in 1 h dissolved almost 90% of La while 12% of Al and 25% of Fe were transferred to the leachate. The extraction of RE metals and main impurities such as Al and Fe by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) was investigated. Experiments showed that it was necessary to remove Fe before extracting RE and the optimum extraction conditions for a high recovery of RE while 0% of Al extraction were pH≤1, contact time=10min, and D2EHPA/TBP volume ratio= 4 : 1. At these conditions, the extraction yields of La(III) and Ce(III) were 72% and 89%, respectively. A two-step solvent extraction was developed to achieve a high purity of RE mixture, which included (1) the removal of impurity Fe by 25% (v/v) diisooctyl phosphinic acid (DiOPA) in n-octane for 140 min, (2) the extraction of rare earths by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) in n-octane for 10 min without the need for adjusting the pH of the leaching solution.
References
Chiranjeevi T, Ravichander N, Gokak DT, Ravikumar V, Choudary NV, Petrol. Sci. Technol., 32, 470 (2014)
Chou MIM, Chen LM, Chou SFJ, Int. J. Environ. Sust., 8, 19 (2013)
Ferella F, Innocenzi V, Maggiore F, Res. Conserv. Recy., 108, 10 (2016)
Nguyen CT, Nguyen HM, Ta MQ, PetroVietnam J., 11, 43 (2013)
Gao X, Owens WT, US Patent, US20120156116 A1 (2012).
Jordens A, Cheng YP, Waters KE, Miner. Eng., 41, 97 (2013)
Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Waltone A, Buchertf M, J. Clean Prod., 51, 1 (2013)
Duby PF, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc. (2000).
Li L, Xu S, Ju Z, Wu F, Hydrometallurgy, 100, 41 (2009)
Zhang PW, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K, J. Power Sources, 77(2), 116 (1999)
Pietrelli L, Bellomo B, Fontana D, Montereali MR, Hydrometallurgy, 66, 135 (2002)
Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K, Hydrometallurgy, 50, 61 (1998)
Jiang Y, Shibayama A, Liu K, Fujita T, Hydrometallurgy, 76, 1 (2005)
Jiang Y, Shibayama A, Liu K, Fujita T, Can. Metall. Q., 43, 431 (2004)
Lee CH, Yen HY, Liao CH, Popuri SR, Cadogan EI, Hsu CJ, J. Mater. Cycles Waste Manage., 19, 102 (2017)
Lee CH, Chen YJ, Liao CH, Popuri SR, Tsai SL, Hung CE, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 5825 (2013)
Innocenzi V, Ferella F, Michelis ID, Veglio F, J. Ind. Eng. Chem., 24, 92 (2015)
Zhao Z, Qiu Z, Jang J, Lu S, Cao L, Zhang W, Xu Y, Hydrometallurgy, 167, 183 (2016)
Wenzel M, Schnaars K, Kelly N, et al., Rare Metal Technology, John Wiley & Sons Inc., NJ (2016).
ASTM D7085, Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (XRF) (2010).
Wang J, Xu Y, Wang L, Zhao L, Wang Q, Cui D, Long Z, Huang X, J. Environ. Chem. Eng., 5, 3711 (2017)
Moeller T, The Chemistry of the Lanthanides, Reinhold Publishing, New York (1963).
Xia C, Canad. Institute of Mining, Metallurgy and Petroleum, Westmont (2013).
Gupta CK, Krishnamurthy N, Extractive metallurgy of rare earths, CRC Press, Florida (2005).
Roddy JW, Coleman CF, Arai S, J. Inorg. Nucl. Chem., 33, 1099 (1971)
Sato T, Nakamura T, Ikeno M, Hydrometallurgy, 15, 209 (1985)
Matsuyama H, Miyake Y, Izumo Y, Teramoto M, Hydrometallurgy, 24, 37 (1990)
Silberberg MS, Principles of general chemistry, McGraw-Hill, U.S.A. (2010).
Avgouropoulos G, Environmental Catalysis over Gold-Based Materials, RSC (2013).
Reger DL, Goode SR, Ball DW, Chemistry: Principles and Practice, Brooks/Cole, U.S.A. (2010).
Snoeyink VL, Jenkins D, Water Chemistry, John Wiley & Sons, New York (1980).
Seo EY, Cheong YW, Yim GJ, Min KW, Geroni JN, Catena, 148, 11 (2017)
Tian J, Chi R, Zhu G, Xu S, Zhang Z, Nonferrous Met., 2, 57 (2000)
Liu K, Wang Y, Wei M, Tang X, Zhang P, China Patent, CN 107130120 A (2017).
Maeda M, Narita H, Tokoro C, Tanaka M, Motokawa R, Shiwaku H, Yaita T, Sep. Purif. Technol., 177, 176 (2017)
Liu M, Zhou Y, The Chinese J. Nonferrous Met., 15(10), 1648 (2005)
Yu S, Chen J, Hydrometallurgy, 22, 183 (1989)
Osaka AF, Nara IM, Osaka MT, US Patent, US 4582691 A (1986).
Nucciarone D, Jakovljevic B, Medeiros BAF, Hill-house J, DePalo M, Sole, et al., Proceedings of the International Solvent Extraction Conference ISEC,, 1, 402 (2002)
Lin-yan L, Sheng-ming X, Zhong-jun J, Zhang Z, Fu-hui L, Guo-bao L, Trans. Nonferrous Met. Soc. China, 20, 205 (2010)
Chou MIM, Chen LM, Chou SFJ, Int. J. Environ. Sust., 8, 19 (2013)
Ferella F, Innocenzi V, Maggiore F, Res. Conserv. Recy., 108, 10 (2016)
Nguyen CT, Nguyen HM, Ta MQ, PetroVietnam J., 11, 43 (2013)
Gao X, Owens WT, US Patent, US20120156116 A1 (2012).
Jordens A, Cheng YP, Waters KE, Miner. Eng., 41, 97 (2013)
Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Waltone A, Buchertf M, J. Clean Prod., 51, 1 (2013)
Duby PF, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc. (2000).
Li L, Xu S, Ju Z, Wu F, Hydrometallurgy, 100, 41 (2009)
Zhang PW, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K, J. Power Sources, 77(2), 116 (1999)
Pietrelli L, Bellomo B, Fontana D, Montereali MR, Hydrometallurgy, 66, 135 (2002)
Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K, Hydrometallurgy, 50, 61 (1998)
Jiang Y, Shibayama A, Liu K, Fujita T, Hydrometallurgy, 76, 1 (2005)
Jiang Y, Shibayama A, Liu K, Fujita T, Can. Metall. Q., 43, 431 (2004)
Lee CH, Yen HY, Liao CH, Popuri SR, Cadogan EI, Hsu CJ, J. Mater. Cycles Waste Manage., 19, 102 (2017)
Lee CH, Chen YJ, Liao CH, Popuri SR, Tsai SL, Hung CE, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 5825 (2013)
Innocenzi V, Ferella F, Michelis ID, Veglio F, J. Ind. Eng. Chem., 24, 92 (2015)
Zhao Z, Qiu Z, Jang J, Lu S, Cao L, Zhang W, Xu Y, Hydrometallurgy, 167, 183 (2016)
Wenzel M, Schnaars K, Kelly N, et al., Rare Metal Technology, John Wiley & Sons Inc., NJ (2016).
ASTM D7085, Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (XRF) (2010).
Wang J, Xu Y, Wang L, Zhao L, Wang Q, Cui D, Long Z, Huang X, J. Environ. Chem. Eng., 5, 3711 (2017)
Moeller T, The Chemistry of the Lanthanides, Reinhold Publishing, New York (1963).
Xia C, Canad. Institute of Mining, Metallurgy and Petroleum, Westmont (2013).
Gupta CK, Krishnamurthy N, Extractive metallurgy of rare earths, CRC Press, Florida (2005).
Roddy JW, Coleman CF, Arai S, J. Inorg. Nucl. Chem., 33, 1099 (1971)
Sato T, Nakamura T, Ikeno M, Hydrometallurgy, 15, 209 (1985)
Matsuyama H, Miyake Y, Izumo Y, Teramoto M, Hydrometallurgy, 24, 37 (1990)
Silberberg MS, Principles of general chemistry, McGraw-Hill, U.S.A. (2010).
Avgouropoulos G, Environmental Catalysis over Gold-Based Materials, RSC (2013).
Reger DL, Goode SR, Ball DW, Chemistry: Principles and Practice, Brooks/Cole, U.S.A. (2010).
Snoeyink VL, Jenkins D, Water Chemistry, John Wiley & Sons, New York (1980).
Seo EY, Cheong YW, Yim GJ, Min KW, Geroni JN, Catena, 148, 11 (2017)
Tian J, Chi R, Zhu G, Xu S, Zhang Z, Nonferrous Met., 2, 57 (2000)
Liu K, Wang Y, Wei M, Tang X, Zhang P, China Patent, CN 107130120 A (2017).
Maeda M, Narita H, Tokoro C, Tanaka M, Motokawa R, Shiwaku H, Yaita T, Sep. Purif. Technol., 177, 176 (2017)
Liu M, Zhou Y, The Chinese J. Nonferrous Met., 15(10), 1648 (2005)
Yu S, Chen J, Hydrometallurgy, 22, 183 (1989)
Osaka AF, Nara IM, Osaka MT, US Patent, US 4582691 A (1986).
Nucciarone D, Jakovljevic B, Medeiros BAF, Hill-house J, DePalo M, Sole, et al., Proceedings of the International Solvent Extraction Conference ISEC,, 1, 402 (2002)
Lin-yan L, Sheng-ming X, Zhong-jun J, Zhang Z, Fu-hui L, Guo-bao L, Trans. Nonferrous Met. Soc. China, 20, 205 (2010)