Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 17, 2017
Accepted December 19, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Influence of surfactants and experimental variables on the viscosity characteristics of coal water mixtures
Ho Won Ra
Sung Min Yoon
Tae-Young Mun
Myung Won Seo
Ji Hong Moon
Sang Jun Yoon
Jae Ho Kim
Jae Goo Lee
Min Zy Jung1
Jong Dae Lee1†
Clean Fuel Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 1Department of Chemical Engineering, Chungbuk National University, Chungdea-ro 1, Seowon-gu Cheong-ju, Chungbuk 28644, Korea
jdlee@chungbuk.ac.kr
Korean Journal of Chemical Engineering, May 2018, 35(5), 1219-1224(6), 10.1007/s11814-017-0349-x
Download PDF
Abstract
To improve the fluidity of a coal water mixture (CWM) having lower viscosity and higher solid concentration, the effects of surfactants (five kinds) and experimental variables such as temperature (5-65 °C), pH (1-11), particle size distribution (PSD) on the viscosity characteristics of two different coals (Shenhua and Kideco Coal) were investigated. Relatively economical surfactants were chosen in this study: sulfonated melamine formaldehyde polymer (SMF-30), naphthalene formaldehyde sulfonate (Sikament-NN), naphthalene sulfonate water reducer (NSWR), naphthalene formaldehyde sulfonate (PC-1000) and poly-carboxylate (PC). The SMF-30, an anionic surfactant, revealed the most significant reduction in viscosity of CWM among the five surfactants since the SMF-30 forms electric double layer on the surface of coal, and the repulsive force of this layer surpasses the aggregation of coal particles. In addition, the viscosity of CWM decreased with increasing pH and temperature, in particular, the increase in OH- on the surface of coals by the addition of NaOH caused the increase in the repulsive force between the negatively charged coal particles. Furthermore, the very fine particles (less than 45 μm) of coals should be removed before making CWMs since it revealed the increase in viscosity of CWMs.
References
Bielowicz B, Fuel, 96(1), 497 (2012)
Dincer H, Boylu F, Sirkeci AA, Atesok G, Int. J. Miner. Process., 70(1-4), 41 (2003)
Das D, Dash U, Meher J, Misra PK, Fuel Process. Technol., 113, 41 (2013)
Atesok G, Boylu F, Sirkeci AA, Dincer H, Fuel, 81(14), 1855 (2002)
Yun Z, Wu G, Meng X, Zhang Y, Shi F, He Y, Luo X, Min. Sci. Technol., 21, 343 (2011)
Kim SH, Hwang KS, Hong SS, J. Korean Ind. Eng. Chem., 8(4), 640 (1997)
Ding C, Nie B, Yang H, Dai L, Zhao C, Zhao F, Li H, Procedia Eng., 26, 1314 (2011)
Ma SD, Zhao P, Guo Y, Zhong LS, Wang Y, Fuel, 111, 648 (2013)
Zhu JF, Zhang GH, Liu GJ, Qu QQ, Li YB, Fuel Process. Technol., 118, 187 (2014)
Zhang GH, Li JG, Zhu JF, Qu QQ, Xiong W, Powder Technol., 254, 572 (2014)
Umar DF, Usui H, Komoda Y, Muta'alim, Fuel Process. Technol., 90(4), 611 (2009)
Roh NS, Shin DH, Kim JD, Kim KH, Kim DC, Energy Eng. J., 4, 163 (1995)
Zhu J, Zhang G, Miao Z, Shang T, Colloids Surf. A: Physicochem. Eng. Asp., 412, 101 (2012)
Gurses A, Acikyildiz M, Dogar C, Karaca S, Bayrak R, Fuel Process. Technol., 87(9), 821 (2006)
Mishra SK, Panda D, J. Colloid Interface Sci., 283(2), 294 (2005)
Boylu F, Dincer H, Atesok G, Fuel Process. Technol., 85(4), 241 (2004)
Aktas Z, Woodburn ET, Fuel Process. Technol., 62(1), 1 (2000)
Cho JS, Hydrothermal Treatment of Low Rank Coals for Coal-Water Mixture, Master’s Thesis, KAIST (1998).
Das D, Dash U, Nayk A, Misra PK, Energy Fuels, 24, 1260 (2010)
Kim SH, Kim YH, Hwang KS, Hong SS, J. Ind. Sci. Tech. Institute, 11, 13 (1997)
Qiu XQ, Zhou MS, Yang DJ, Lou HM, Ouyang XP, Pang YX, Fuel, 86(10-11), 1439 (2007)
Dincer H, Boylu F, Sirkeci AA, Atesok G, Int. J. Miner. Process., 70(1-4), 41 (2003)
Das D, Dash U, Meher J, Misra PK, Fuel Process. Technol., 113, 41 (2013)
Atesok G, Boylu F, Sirkeci AA, Dincer H, Fuel, 81(14), 1855 (2002)
Yun Z, Wu G, Meng X, Zhang Y, Shi F, He Y, Luo X, Min. Sci. Technol., 21, 343 (2011)
Kim SH, Hwang KS, Hong SS, J. Korean Ind. Eng. Chem., 8(4), 640 (1997)
Ding C, Nie B, Yang H, Dai L, Zhao C, Zhao F, Li H, Procedia Eng., 26, 1314 (2011)
Ma SD, Zhao P, Guo Y, Zhong LS, Wang Y, Fuel, 111, 648 (2013)
Zhu JF, Zhang GH, Liu GJ, Qu QQ, Li YB, Fuel Process. Technol., 118, 187 (2014)
Zhang GH, Li JG, Zhu JF, Qu QQ, Xiong W, Powder Technol., 254, 572 (2014)
Umar DF, Usui H, Komoda Y, Muta'alim, Fuel Process. Technol., 90(4), 611 (2009)
Roh NS, Shin DH, Kim JD, Kim KH, Kim DC, Energy Eng. J., 4, 163 (1995)
Zhu J, Zhang G, Miao Z, Shang T, Colloids Surf. A: Physicochem. Eng. Asp., 412, 101 (2012)
Gurses A, Acikyildiz M, Dogar C, Karaca S, Bayrak R, Fuel Process. Technol., 87(9), 821 (2006)
Mishra SK, Panda D, J. Colloid Interface Sci., 283(2), 294 (2005)
Boylu F, Dincer H, Atesok G, Fuel Process. Technol., 85(4), 241 (2004)
Aktas Z, Woodburn ET, Fuel Process. Technol., 62(1), 1 (2000)
Cho JS, Hydrothermal Treatment of Low Rank Coals for Coal-Water Mixture, Master’s Thesis, KAIST (1998).
Das D, Dash U, Nayk A, Misra PK, Energy Fuels, 24, 1260 (2010)
Kim SH, Kim YH, Hwang KS, Hong SS, J. Ind. Sci. Tech. Institute, 11, 13 (1997)
Qiu XQ, Zhou MS, Yang DJ, Lou HM, Ouyang XP, Pang YX, Fuel, 86(10-11), 1439 (2007)