Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 17, 2017
Accepted February 20, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid
Department of Biotechnology, Pukyong National University, Busan 48513, Korea
gtjeong@pknu.ac.kr
Korean Journal of Chemical Engineering, June 2018, 35(6), 1290-1296(7), 10.1007/s11814-018-0035-7
Download PDF
Abstract
As a potential renewable aquatic resource, chitosan is the second most abundant biopolymer. Methanesulfonic acid is a catalyst that is strongly acidic and biodegradable. We used chitosan and methanesulfonic acid to produce platform chemicals via an acid-catalyzed hydrothermal reaction. In the methanesulfonic acid-catalyzed hydrothermal conversion of chitosan, an optimal levulinic acid yield of 28.21±1.20% was achieved under the following conditions: 2% chitosan and 0.2M methanesulfonic acid at 200 °C for 30 min. These results indicated that a combination of chitosan and methanesulfonic acid would be suitable for platform chemical production.
References
Zang H, Yu S, Yu P, Ding H, Du Y, Yang Y, Zhang Y, Carbohydr. Res., 442, 1 (2017)
Osatiashtiani A, Lee AF, Brown DR, Melerom JA, Morales G, Wilson K, Catal. Sci. Technol., 4, 333 (2014)
Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
Nguyen TH, Ra CH, Sunwoo YI, Jeong GT, Kim SK, J. Microbiol. Biotechnol., 26, 1264 (2016)
Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
Jeong GT, Ind. Crop. Prod., 62, 77 (2014)
Lee SB, Jeong GT, Appl. Biochem. Biotechnol., 176(4), 1151 (2015)
Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384 (2013)
Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
Antonetti C, Licursi D, Fulignati S, Valentinif G, Galletti AMR, Catalysts, 6, 196 (2016)
Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
Yan K, Wu G, Lafleur T, Jarvis C, Sustain. Energy Rev., 38, 663 (2014)
Son PA, Nishimura S, Ebitani KK, React. Kinet. Mech. Catal., 106, 185 (2012)
Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559 (2012)
Ya'aini N, Amin NAS, Asmadi M, Bioresour. Technol., 116, 58 (2012)
Kim SK, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, CRC Press, New York (2011).
Mackay RG, Tait JM, Handbook of chitosan research and applications, Nova Science Publishers, Inc., New York (2012).
Shahidi F, Arachchi JKV, Jeon YJ, Trends Food Sci. Technol., 10, 37 (1999)
Yan N, Chen X, Nature, 524(7564), 155 (2015)
Kerton FM, Liu Y, Omari KW, Hawboldt K, Green Chem., 15, 860 (2013)
Kim SK, Rajapakse N, Carbohydr. Polym., 62, 357 (2005)
Food and Agriculture Organization of the United States, The State of World Fisheries and Aquaculture 2014, 2014; http://www.fao.org/3/a-i3720e.pdf (Retrieved on Jan. 2, 2018).
Chen X, Yang H, Yan N, Chem. Eur. J., 22, 13402 (2016)
Park MR, Kim SK, Jeong GT, J. Ind. Eng. Chem., 61, 119 (2018)
Drover MW, Omari KW, Murphy JN, Kerton FM, RSC Adv., 2, 4642 (2012)
Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T, Green Chem., 15, 2960 (2013)
Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N, ACS Sustainable Chem. Eng., 4, 3912 (2016)
Ohmi Y, Nishimura S, Ebitani K, ChemSusChem, 6, 2259 (2013)
Yoon JH, Enzyme Microb. Technol., 37(6), 663 (2005)
Bobbink FD, Zhang J, Pierson Y, Chen X, Yan N, Green Chem., 17, 1024 (2015)
Zeng L, Qin C, Wang L, Li W, Carbohydr. Polym., 83, 1553 (2011)
Omari K, Dodot L, Kerton FM, ChemSusChem, 5, 1767 (2012)
Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
Rackemann DW, Bartley JP, Harrison MD, Doherty WOS, RSC Adv., 6, 74525 (2016)
Mthembu LD, Production of levulinic acid from sugarcane bagasse, Durban University of Technology, Durban, South Africa. Master’s Thesis (2015).
Pedersen M, Meyer AS, New Biotechnol., 27, 739 (2010)
Kwon OM, Kim DH, Kim SK, Jeong GT, Algal Res., 13, 293 (2016)
Yu S, Zang H, Chen S, Jiang Y, Yan B, Cheng B, Polym. Degrad. Stabil., 134, 105 (2016)
Kuster BFM, Starch, 42, 314 (1990)
Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
Baker SC, Kelly DP, Murrell JC, Nature, 350, 627 (1991)
Jeong GT, Kim SK, Park DH, Biotechnol. Bioprocess Eng., 18, 88 (2013)
Lewkowski J, ARKIVOC, 1, 17 (2001)
Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
Osatiashtiani A, Lee AF, Brown DR, Melerom JA, Morales G, Wilson K, Catal. Sci. Technol., 4, 333 (2014)
Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
Nguyen TH, Ra CH, Sunwoo YI, Jeong GT, Kim SK, J. Microbiol. Biotechnol., 26, 1264 (2016)
Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
Jeong GT, Ind. Crop. Prod., 62, 77 (2014)
Lee SB, Jeong GT, Appl. Biochem. Biotechnol., 176(4), 1151 (2015)
Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384 (2013)
Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
Antonetti C, Licursi D, Fulignati S, Valentinif G, Galletti AMR, Catalysts, 6, 196 (2016)
Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
Yan K, Wu G, Lafleur T, Jarvis C, Sustain. Energy Rev., 38, 663 (2014)
Son PA, Nishimura S, Ebitani KK, React. Kinet. Mech. Catal., 106, 185 (2012)
Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559 (2012)
Ya'aini N, Amin NAS, Asmadi M, Bioresour. Technol., 116, 58 (2012)
Kim SK, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, CRC Press, New York (2011).
Mackay RG, Tait JM, Handbook of chitosan research and applications, Nova Science Publishers, Inc., New York (2012).
Shahidi F, Arachchi JKV, Jeon YJ, Trends Food Sci. Technol., 10, 37 (1999)
Yan N, Chen X, Nature, 524(7564), 155 (2015)
Kerton FM, Liu Y, Omari KW, Hawboldt K, Green Chem., 15, 860 (2013)
Kim SK, Rajapakse N, Carbohydr. Polym., 62, 357 (2005)
Food and Agriculture Organization of the United States, The State of World Fisheries and Aquaculture 2014, 2014; http://www.fao.org/3/a-i3720e.pdf (Retrieved on Jan. 2, 2018).
Chen X, Yang H, Yan N, Chem. Eur. J., 22, 13402 (2016)
Park MR, Kim SK, Jeong GT, J. Ind. Eng. Chem., 61, 119 (2018)
Drover MW, Omari KW, Murphy JN, Kerton FM, RSC Adv., 2, 4642 (2012)
Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T, Green Chem., 15, 2960 (2013)
Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N, ACS Sustainable Chem. Eng., 4, 3912 (2016)
Ohmi Y, Nishimura S, Ebitani K, ChemSusChem, 6, 2259 (2013)
Yoon JH, Enzyme Microb. Technol., 37(6), 663 (2005)
Bobbink FD, Zhang J, Pierson Y, Chen X, Yan N, Green Chem., 17, 1024 (2015)
Zeng L, Qin C, Wang L, Li W, Carbohydr. Polym., 83, 1553 (2011)
Omari K, Dodot L, Kerton FM, ChemSusChem, 5, 1767 (2012)
Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
Rackemann DW, Bartley JP, Harrison MD, Doherty WOS, RSC Adv., 6, 74525 (2016)
Mthembu LD, Production of levulinic acid from sugarcane bagasse, Durban University of Technology, Durban, South Africa. Master’s Thesis (2015).
Pedersen M, Meyer AS, New Biotechnol., 27, 739 (2010)
Kwon OM, Kim DH, Kim SK, Jeong GT, Algal Res., 13, 293 (2016)
Yu S, Zang H, Chen S, Jiang Y, Yan B, Cheng B, Polym. Degrad. Stabil., 134, 105 (2016)
Kuster BFM, Starch, 42, 314 (1990)
Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
Baker SC, Kelly DP, Murrell JC, Nature, 350, 627 (1991)
Jeong GT, Kim SK, Park DH, Biotechnol. Bioprocess Eng., 18, 88 (2013)
Lewkowski J, ARKIVOC, 1, 17 (2001)
Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)