ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 10, 2017
Accepted February 6, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification

Xiamen Key Laboratory of High-valued Conversion Technology of Agricultural Biomass, College of Energy, Xiamen University, Xiamen 361102, China
Korean Journal of Chemical Engineering, June 2018, 35(6), 1312-1318(7), 10.1007/s11814-018-0025-9
downloadDownload PDF

Abstract

5-[(Formyloxy)methyl]furfural (FMF), an analogue of 5-(hydroxymethyl)furfural (HMF) is becoming more attractive due to its superior stability and hydrophobicity, which make it easier to refineand store. In the present study, FMF was produced from fructose by one-pot approach in pure formic acid media or by a two-step approach via HMF in choline chloride (ChCl)/fructose deep eutectic solvents (DES) system. A favorable FMF yield of 63.22% was reached by two-step approach. In addition, the effects of reaction parameters, such as temperature and acidity, on preparation of FMF from fructose were systematically investigated. The dehydration of fructose into HMF was confirmed as the rate-controlling step in the consecutive reaction. Ultimately, the separation and purification procedures of FMF were put forward. The FMF with a purity of 98.8% was obtained finally. Meanwhile, the FMF purified by saturated sodium bicarbonate solution showed an excelled storage stability.

References

Naik SN, Goud Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
Nakagawa Y, Tamura M, Tomishige K, ACS Catal., 3, 2655 (2013)
Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
Esmaeili N, Zohuriaan-Mehr MJ, Bouhendi H, Bagheri-Marandi G, Korean J. Chem. Eng., 33(6), 1964 (2016)
Zhang Z, Wang Q, Xie H, Liu W, Zhao ZK, ChemSusChem, 4, 131 (2011)
Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK, J. Am. Chem. Soc., 126(29), 9142 (2004)
Vigier KDO, Chatel G, Jerome F, ChemCatChem, 7, 1250 (2015)
Tang W, Liu L, Li G, Zhu T, Row KH, Korean J. Chem. Eng., 34, 814 (2016)
Ilgen W, Ott D, Kralisch D, Reil C, Palmberger A, Konig B, Green Chem., 11, 1948 (2009)
Zhao Q, Sun Z, Wang S, Huang G, Wang X, Jiang Z, RSC Adv., 4, 63055 (2014)
Liu F, Barrault J, Vigier KDO, Jerome F, ChemSusChem, 5, 1223 (2012)
Li C, Zhao ZK, Wang A, Zheng M, Zhang T, Carbohydr. Res., 345, 1846 (2010)
Jiang YT, Chen W, Sun Y, Li Z, Tang X, Zeng XH, Lin L, Liu SJ, Ind. Crop. Prod., 83, 408 (2016)
Du Z, Ma J, Wang F, Liu J, Xu J, Green Chem., 13, 554 (2011)
Grasset FL, Katryniok B, Paul S, Nardello-Rataj V, Pera-Titus M, Clacens JM, De Campo F, Dumeignil F, RSC Adv., 3, 9942 (2013)
Thananatthanachon T, Rauchfuss TB, Angew. Chem.-Int. Edit., 49, 6616 (2010)
De S, Dutta S, Saha B, ChemSusChem, 5, 1826 (2012)
Zhou X, Rauchfuss TB, ChemSusChem, 6, 383 (2013)
Kang ES, Hong YW, Chae DW, Kim B, Kim B, Kim YJ, Cho JK, Kim YG, ChemSusChem, 8, 1179 (2015)
Sun Y, Lin L, J. Agric. Food Chem., 58, 2253 (2010)
Wrigstedt P, Keskivali J, Leskela M, Repo T, ChemCatChem, 7, 501 (2015)
Girisuta B, Janssen L, Heeres HJ, Green Chem., 8, 701 (2006)
Van Dam HE, Kieboom APG, van Bekkum H, Starch-Starke, 38, 95 (1986)
Asghari FS, Yoshida H, Ind. Eng. Chem. Res., 46(23), 7703 (2007)
Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 99, 1 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로