ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 20, 2017
Accepted February 20, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Liquid-liquid equilibria for water+2,3-butanediol+1-pentanol ternary system at different temperatures of 298.2, 308.2, and 318.2 K

Department of Chemical and Biomolecular Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 04107, Korea 1Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, U.S.A., USA
limjs@sogang.ac.kr
Korean Journal of Chemical Engineering, June 2018, 35(6), 1328-1334(7), 10.1007/s11814-018-0036-6
downloadDownload PDF

Abstract

Liquid-liquid equilibrium (LLE) data was measured for the water+2,3-butanediol+1-pentanol ternary system at 298.2, 308.2, and 318.2 K under atmospheric pressure. Binodal solubility curves and complete ternary phase diagrams were experimentally obtained in mass fraction at these three different temperatures. The consistency of the tieline results was verified by using Othmer-Tobias and Hand plots. Distribution coefficients and separation factors of 2,3- butanediol were evaluated for each tie-line, and the effect of temperature was also investigated. It was found that the distribution coefficients and separation factors of 2,3-butanediol increased with temperature. The experimental LLE data were correlated by the UNIQUAC and NRTL models, and the binary interaction parameters calculated from these models have been reported. Both models successfully predict the experimental tie-line data within average root-meansquare deviations (RMSD) being less than 1.38% and 1.49% from the UNIQUAC and NRTL models, respectively.

References

Kamm B, Gruber PR, Kamm M, Biorefineries-industrial processes and products, Wiley Online Library (2006).
Celinska E, Grajek W, Biotechnol. Adv., 27, 715 (2009)
Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS, Bioresour. Technol., 99(17), 7966 (2008)
GARG SK, JAIN A, Bioresour. Technol., 51(2-3), 103 (1995)
Syu MJ, Microbiol. Biotechnol., 55, 10 (2001)
Ji XJ, Huang H, Ouyang PK, Biotechnol. Adv, 29, 351 (2011)
Haveren JV, Scott EL, Sanders J, Bioprod. Biorefin., 2, 41 (2008)
De Faveri D, Torre P, Molinari F, Perego P, Converti A, Enzyme Microb. Technol., 33(5), 708 (2003)
Magee RJ, Kosaric N, Adv. Appl. Microbiol., 32, 89 (1987)
Zeng AP, Biebl H, Deckwer WD, Appl. Microbiol. Biotechnol., 33, 264 (1990)
Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P, Chin. J. Chem. Eng., 14(1), 132 (2006)
Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N, J. Biosci. Bioeng., 90(6), 661 (2000)
Afschar AS, Vaz Rossell CE, Jonas R, Quesada CA, Schaller K, J. Biotechnol., 27, 317 (1993)
Xiu ZL, Zeng AP, Appl. Microbiol. Biotechnol., 78(6), 917 (2008)
Qureshi N, Meagher MM, Hutkins RW, Sep. Sci. Technol., 29(13), 1733 (1994)
Jiang B, Li ZG, Dai JY, Zhang DJ, Xiu ZL, Process Biochem., 41, 112 (2009)
Sun LH, Jiang B, Xiu ZL, Biotechnol. Lett., 31, 371 (2008)
Birajdar SD, Padmanabhan S, Rajagopalan S, J. Chem. Technol. Biotechnol., 90(8), 1455 (2015)
Birajdar SD, Rajagopalan S, Sawant JS, Padmanabhan S, Process Biochem., 50(9), 1449 (2015)
Eiteman MA, Gainer JL, Appl. Microbiol. Biotechnol., 30, 614 (1989)
Alvarez MET, Moraes EB, Machado AB, Filho RM, Appl. Biochem. Biotechnol., 136, 451 (2007)
Garcia-Chavez LY, Schuur B, de Haan AB, Ind. Eng. Chem. Res., 52(13), 4902 (2013)
Malinowski JJ, Biotechnol. Tech., 13, 127 (1999)
Garcia-Chavez LY, Shazad M, Schuur B, de Haan AB, J. Chem. Thermodyn., 55, 85 (2012)
Sharma S, Pandya G, Chakrabarti T, Khanna P, J. Chem. Eng. Data, 39(4), 823 (1994)
Escudero I, Cabezas JL, Coca J, J. Chem. Eng. Data, 39(4), 834 (1994)
Wu YY, Pan DT, Zhu JW, Chen K, Wu B, Ji LJ, Fluid Phase Equilib., 325, 100 (2012)
Wu YY, Zhu JW, Chen K, Wu B, Shen YL, Fluid Phase Equilib., 266(1-2), 42 (2008)
Khayati G, Pahlavanzadeh H, Vasheghani-Farahani E, Ghaemi N, J. Chem. Thermodyn., 41(2), 150 (2009)
Wu YY, Zhu JW, Chen K, Wu B, Fang J, Shen YL, Fluid Phase Equilib., 265(1-2), 1 (2008)
Birajdar SD, Padmanabhan S, Rajagopalan S, J. Chem. Eng. Data, 59(8), 2456 (2014)
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Joint Committee for Guides in Metrology, 100 (2008).
Taylor BN, Kuyatt CE, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, National Institute of Standards and Technology, Gaithersburg (1994).
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
Bondi AA, Physical properties of molecular crystals, liquids & glasses, Wiley, New York (1968).
Othmer DE, Tobias PE, Ind. Eng. Chem., 34, 690 (1942)
Hand DB, J. Phys. Chem., 34, 1961 (1930)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로