Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 24, 2017
Accepted March 15, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Response surface methodology in optimization of a divided wall column
Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P. O. Box 98164-161, Iran
rahimi@hamoon.usb.ac.ir
Korean Journal of Chemical Engineering, July 2018, 35(7), 1414-1422(9), 10.1007/s11814-018-0048-2
Download PDF
Abstract
A dividing wall column (DWC) is a thermally coupled distillation system with a high energy efficiency that requires lower space and investment compared to the conventional column system. The design of a DWC involves a number of structural and process parameters that need to be optimized simultaneously to improve energetic and economic potential and reduce space requirement. We used response surface methodology (RSM) to optimize DWC nonlinearly and to figure out the effect of parameters and their interactions on energy consumption, product quality, and dimensions of a DWC. Results demonstrate that process variables have significant effects on the energy efficiency of a DWC as compared to the effect of structural variables. The optimum DWC parameters can be found by RSM with minimal simulation runs and the prediction results of RSM agree well with the rigorous simulation results.
Keywords
References
Harmsen J, Chem. Eng. Process., 49(1), 70 (2010)
Taylor R, Krishna R, Kooijman H, Chem. Eng. Prog., 98, 28 (2003)
Proios P, Pistikopoulos EN, Ind. Eng. Chem. Res., 44(13), 4656 (2005)
Harwardt A, Kossack S, Marquardt W, Comput.-Aided Chem. Eng., 25, 91 (2008)
Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
Petlyuk FB, Int. Chem. Eng., 5, 555 (1965)
Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383 (2002)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
Kaibel G, Chem. Ing. Tech., 59, 533 (1987)
Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O'Brien DE, Chem. Eng. Prog., 98(5), 64 (2002)
Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559 (2010)
Rong BG, Chem. Eng. Res. Des., 89(8A), 1281 (2011)
Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825 (2010)
Triantafyllou C, Smith R, Chem. Eng. Res. Des., 70, 118 (1992)
Seihoub FZ, Benyounes H, Shen WF, Gerbaud V, Ind. Eng. Chem. Res., 56(34), 9710 (2017)
Torres-Ortega Carlo Edgar, Rong Ben-Guang, Ind. Eng. Chem. Res., 55(27), 7411 (2016)
Ramapriya GM, Tawarmalani M, Agrawal R, AIChE J., 64(2), 649 (2018)
Ramapriya GM, Tawarmalani M, Agrawal R, AIChE J., 64(2), 660 (2018)
Luyben WL, Chem. Eng. Res. Des., 123, 152 (2017)
Kim YH, Chem. Eng. Commun., 205(1), 134 (2018)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 596 (2003)
Fidkowski Z, Krolikowski L, AIChE J., 32, 537 (1986)
Carlberg NA, Westerberg AW, Ind. Eng. Chem. Res., 28, 1379 (1989)
Carlberg NA, Westerberg AW, Ind. Eng. Chem. Res., 28, 1386 (1989)
Ramirez-Corona N, Jimenez-Gutierrez A, Castro-Aguero A, Rico-Ramirez V, Chem. Eng. Res. Des., 88(10A), 1405 (2010)
Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
Long NVD, Lee MY, Asia Pac. J. Chem. Eng., 6, 338 (2011)
Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
Dejanovic I, Matijasevic L, Jansen H, Olujic Z, Ind. Eng. Chem. Res., 50(9), 5680 (2011)
Rangaiah GP, Ooi EL, Premkumar R, Chem. Prod. Process Model., 4, 7 (2009)
Herna JGS, Herna S, Jime A, Inst. Chem. Eng., 80, 783 (2002)
Serra M, Espuna A, Puigjaner L, Ind. Eng. Chem. Res., 42(8), 1773 (2003)
Santos-Mandez J, Hernandez S, Chem. Eng. Commun., 192(8), 1085 (2005)
Wenzel S, Rohm HJ, Chem. Ing. Technol., 27, 484 (2004)
Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74 (2012)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 61, 118 (2014)
Gutierrez-Antonio C, Briones-Ramirez A, Comput. Chem. Eng., 33(2), 454 (2009)
Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
Sangal VK, Kumar V, Mishra IM, Comput. Chem. Eng., 40, 33 (2012)
Luyben WL, Distillation design and control using Aspen simulation, Wiley, New York (2013).
Nguyen TD, Conceptual design, application for non-reactive and reactive mixture, PhD diss (2015).
Montgomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
Myers R, Response Surface Methodology. Boston: Allyn and Bacon, Inc. (1971).
Mason RL, Gunst RF, Hess JL, with applications to engineering and science, Wiley, New York (2003).
Anderson TW, Darling DA, Ann. Math. Statist., 23, 2 (1952)
Taylor R, Krishna R, Kooijman H, Chem. Eng. Prog., 98, 28 (2003)
Proios P, Pistikopoulos EN, Ind. Eng. Chem. Res., 44(13), 4656 (2005)
Harwardt A, Kossack S, Marquardt W, Comput.-Aided Chem. Eng., 25, 91 (2008)
Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
Petlyuk FB, Int. Chem. Eng., 5, 555 (1965)
Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383 (2002)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
Kaibel G, Chem. Ing. Tech., 59, 533 (1987)
Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O'Brien DE, Chem. Eng. Prog., 98(5), 64 (2002)
Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559 (2010)
Rong BG, Chem. Eng. Res. Des., 89(8A), 1281 (2011)
Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825 (2010)
Triantafyllou C, Smith R, Chem. Eng. Res. Des., 70, 118 (1992)
Seihoub FZ, Benyounes H, Shen WF, Gerbaud V, Ind. Eng. Chem. Res., 56(34), 9710 (2017)
Torres-Ortega Carlo Edgar, Rong Ben-Guang, Ind. Eng. Chem. Res., 55(27), 7411 (2016)
Ramapriya GM, Tawarmalani M, Agrawal R, AIChE J., 64(2), 649 (2018)
Ramapriya GM, Tawarmalani M, Agrawal R, AIChE J., 64(2), 660 (2018)
Luyben WL, Chem. Eng. Res. Des., 123, 152 (2017)
Kim YH, Chem. Eng. Commun., 205(1), 134 (2018)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 596 (2003)
Fidkowski Z, Krolikowski L, AIChE J., 32, 537 (1986)
Carlberg NA, Westerberg AW, Ind. Eng. Chem. Res., 28, 1379 (1989)
Carlberg NA, Westerberg AW, Ind. Eng. Chem. Res., 28, 1386 (1989)
Ramirez-Corona N, Jimenez-Gutierrez A, Castro-Aguero A, Rico-Ramirez V, Chem. Eng. Res. Des., 88(10A), 1405 (2010)
Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
Long NVD, Lee MY, Asia Pac. J. Chem. Eng., 6, 338 (2011)
Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
Dejanovic I, Matijasevic L, Jansen H, Olujic Z, Ind. Eng. Chem. Res., 50(9), 5680 (2011)
Rangaiah GP, Ooi EL, Premkumar R, Chem. Prod. Process Model., 4, 7 (2009)
Herna JGS, Herna S, Jime A, Inst. Chem. Eng., 80, 783 (2002)
Serra M, Espuna A, Puigjaner L, Ind. Eng. Chem. Res., 42(8), 1773 (2003)
Santos-Mandez J, Hernandez S, Chem. Eng. Commun., 192(8), 1085 (2005)
Wenzel S, Rohm HJ, Chem. Ing. Technol., 27, 484 (2004)
Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74 (2012)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 61, 118 (2014)
Gutierrez-Antonio C, Briones-Ramirez A, Comput. Chem. Eng., 33(2), 454 (2009)
Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
Sangal VK, Kumar V, Mishra IM, Comput. Chem. Eng., 40, 33 (2012)
Luyben WL, Distillation design and control using Aspen simulation, Wiley, New York (2013).
Nguyen TD, Conceptual design, application for non-reactive and reactive mixture, PhD diss (2015).
Montgomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
Myers R, Response Surface Methodology. Boston: Allyn and Bacon, Inc. (1971).
Mason RL, Gunst RF, Hess JL, with applications to engineering and science, Wiley, New York (2003).
Anderson TW, Darling DA, Ann. Math. Statist., 23, 2 (1952)