Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 4, 2017
Accepted April 5, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
Department of Biological Technology and Environment, Yersin University of Da Lat, Lam Dong, Vietnam 1School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea 2Deparment of Chemistry, University of Dalat, Lam Dong, Vietnam
Korean Journal of Chemical Engineering, July 2018, 35(7), 1525-1531(7), 10.1007/s11814-018-0060-6
Download PDF
Abstract
Iron pyrite (FeS2) thin films were fabricated by spin coating the solution of FeS2 nanocrystals of ~40 nm in size on glass substrates, followed by annealing in a sulfur environment at different temperatures. The effect of sulfurization temperature on the morphology, structural, optical and electrical properties was investigated. With increase of the sulfurization temperature, the grain size and crystallinity of the films was improved, although some cracks and voids were observed on the surface of thin films. The band gap of the FeS2 films was decreased at higher sulfurization temperature. The electrical properties were also changed, including the increasing in resistivity and the decrease in Hall mobility, with increase of sulfurization temperature. The change in the optical and electrical properties of the FeS2 thin films was explained based on the changes of phase, morphology, surface, and grain boundary property.
References
Wadia C, Alivisatos AP, Kammen AM, Environ. Sci. Technol., 43, 2072 (2009)
Alharbi F, Bass JD, Salhi A, Alyamani A, Kim HC, Miller RD, Renew. Energy, 36(10), 2753 (2011)
Bi Y, Exstrom CL, Darveau SA, Huang I, Nano Lett., 11, 4953 (2012)
Steinhagen C, Hatvey TB, Stolle CJ, Harris J, Korgel BA, J. Phys. Chem. Lett., 3, 2352 (2012)
Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B, Altschul E, Platt HAS, Wage JF, Kesler DA, Zunger A, Adv. Energy Mater., 1, 748 (2011)
Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A, Sol. Energy Mater. Sol. Cells, 49(1), 285 (1997)
Sanchez C, Heras C, Ferrer IJ, SPIE, 1729, 172 (1990)
Yamamoto A, Nakamura M, Seki A, Li EL, Hashimoto A, Nakamura S, Sol. Energy Mater. Sol. Cells, 75(3-4), 451 (2003)
Dong Y, Yeng Y, Duan H, Sun Y, Chen Y, Matt. Lett., 59, 2398 (2005)
Aluri V, Reddy KTR, Reddy YM, Nanotechnol. Rev., 4, 469 (2015)
Heras CD, Lifante G, J. Appl. Phys., 82, 5132 (1997)
Seefeld S, Limpinsel M, Liu Y, Weber A, Zhang Y, Berry N, Kwon YJ, Perkins CL, Hemmiger JC, Wu R, Law M, J. Am. Ceram. Soc., 135, 4412 (2013)
Puthussery J, Seefeld S, Berry N, Gibbs M, Law M, J. Am. Ceram. Soc., 133, 716 (2011)
Shi Z, Jayatissa AH, Peiris FC, J. Mater. Sci.: Mater. Electron., 27, 535 (2015)
Hsiao S, Wu K, Huang S, Liu S, Chiu S, Chou L, The Jan. Soc. Appl. Phys., 8, 201 (2015)
Borchert H, Shevehenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H, Langmuir, 21(5), 1931 (2005)
Mao BD, Dong QF, Exstrom CL, Huang JS, Thin Solid Films, 562, 361 (2014)
Wang F, Huang LY, Luan ZJ, Huang JS, Meng L, Mater. Chem. Phys., 132(2-3), 505 (2012)
Soukup RJ, Prabukantha P, Lanno NJ, Sarkar A, Kamler CA, et al., J. Vac. Sci. Technol. A, 29, 1101 (2011)
Mesbitt HW, Saini M, Hochst H, Bancroft GM, Schaufuss AG, Szargan R, American Mineralogist, 85, 850 (2000)
Dubois IE, Holgersson S, Allard S, Water- rock interaction, Taylor & Francis Publication, London, 717 (2010).
Murphy R, Strongin DR, Surface Science Reports, 64, 1 (2009)
Chaturvedi S, Katz R, Guevremont J, Choon MA, Strong DR, American Mineralogist, 81, 261 (1996)
Huska M, Koskenlinna M, Ninisto L, J. Appl. Chem. Biotechnol., 26, 129 (1916)
Heras CD, Ferrer IJ, Nevskaia DM, Sanches C, J. Appl. Phys., 74, 4551 (1993)
Wang F, Huang LY, Luan ZJ, Huang JS, Meng L, Mater. Chem. Phys., 132(2-3), 505 (2012)
Geras CD, Lifante G, J. Appl. Phys., 82, 5132 (1997)
Li W, Dolinger M, Vaneski A, Rogach AL, Jackel F, Feldmann J, J. Mater. Chem., 21, 17946 (2011)
Shukla S, Xing G, Ge H, Prabhakar RR, Mathew S, Su Z, Nalla V, Venkatesan T, Mathews N, Sritharan T, Sum TC, Xiong Q, ACS Nano, 10, 4431 (2016)
Ferrer IJ, Nevskaia DM, Heras CD, Sanches C, Solid State Commun., 74, 913 (1990)
Pridmore DF, Shuey RT, American Mineralogist, 61, 248 (1976)
Huang L, Liu Y, Meng L, J. Mater. Sci. Technol, 25, 237 (2009)
Alharbi F, Bass JD, Salhi A, Alyamani A, Kim HC, Miller RD, Renew. Energy, 36(10), 2753 (2011)
Bi Y, Exstrom CL, Darveau SA, Huang I, Nano Lett., 11, 4953 (2012)
Steinhagen C, Hatvey TB, Stolle CJ, Harris J, Korgel BA, J. Phys. Chem. Lett., 3, 2352 (2012)
Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B, Altschul E, Platt HAS, Wage JF, Kesler DA, Zunger A, Adv. Energy Mater., 1, 748 (2011)
Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A, Sol. Energy Mater. Sol. Cells, 49(1), 285 (1997)
Sanchez C, Heras C, Ferrer IJ, SPIE, 1729, 172 (1990)
Yamamoto A, Nakamura M, Seki A, Li EL, Hashimoto A, Nakamura S, Sol. Energy Mater. Sol. Cells, 75(3-4), 451 (2003)
Dong Y, Yeng Y, Duan H, Sun Y, Chen Y, Matt. Lett., 59, 2398 (2005)
Aluri V, Reddy KTR, Reddy YM, Nanotechnol. Rev., 4, 469 (2015)
Heras CD, Lifante G, J. Appl. Phys., 82, 5132 (1997)
Seefeld S, Limpinsel M, Liu Y, Weber A, Zhang Y, Berry N, Kwon YJ, Perkins CL, Hemmiger JC, Wu R, Law M, J. Am. Ceram. Soc., 135, 4412 (2013)
Puthussery J, Seefeld S, Berry N, Gibbs M, Law M, J. Am. Ceram. Soc., 133, 716 (2011)
Shi Z, Jayatissa AH, Peiris FC, J. Mater. Sci.: Mater. Electron., 27, 535 (2015)
Hsiao S, Wu K, Huang S, Liu S, Chiu S, Chou L, The Jan. Soc. Appl. Phys., 8, 201 (2015)
Borchert H, Shevehenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H, Langmuir, 21(5), 1931 (2005)
Mao BD, Dong QF, Exstrom CL, Huang JS, Thin Solid Films, 562, 361 (2014)
Wang F, Huang LY, Luan ZJ, Huang JS, Meng L, Mater. Chem. Phys., 132(2-3), 505 (2012)
Soukup RJ, Prabukantha P, Lanno NJ, Sarkar A, Kamler CA, et al., J. Vac. Sci. Technol. A, 29, 1101 (2011)
Mesbitt HW, Saini M, Hochst H, Bancroft GM, Schaufuss AG, Szargan R, American Mineralogist, 85, 850 (2000)
Dubois IE, Holgersson S, Allard S, Water- rock interaction, Taylor & Francis Publication, London, 717 (2010).
Murphy R, Strongin DR, Surface Science Reports, 64, 1 (2009)
Chaturvedi S, Katz R, Guevremont J, Choon MA, Strong DR, American Mineralogist, 81, 261 (1996)
Huska M, Koskenlinna M, Ninisto L, J. Appl. Chem. Biotechnol., 26, 129 (1916)
Heras CD, Ferrer IJ, Nevskaia DM, Sanches C, J. Appl. Phys., 74, 4551 (1993)
Wang F, Huang LY, Luan ZJ, Huang JS, Meng L, Mater. Chem. Phys., 132(2-3), 505 (2012)
Geras CD, Lifante G, J. Appl. Phys., 82, 5132 (1997)
Li W, Dolinger M, Vaneski A, Rogach AL, Jackel F, Feldmann J, J. Mater. Chem., 21, 17946 (2011)
Shukla S, Xing G, Ge H, Prabhakar RR, Mathew S, Su Z, Nalla V, Venkatesan T, Mathews N, Sritharan T, Sum TC, Xiong Q, ACS Nano, 10, 4431 (2016)
Ferrer IJ, Nevskaia DM, Heras CD, Sanches C, Solid State Commun., 74, 913 (1990)
Pridmore DF, Shuey RT, American Mineralogist, 61, 248 (1976)
Huang L, Liu Y, Meng L, J. Mater. Sci. Technol, 25, 237 (2009)