Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 29, 2018
Accepted March 28, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrodeposition-fabricated PtCu-alloy cathode catalysts for high-temperature proton exchange membrane fuel cells
School of Integrative Engineering, Chung-Ang University, 84 Heukseokno, Dongjak-gu, Seoul 06974, Korea 1Department of Chemical Engineering, Pukyong National University, 365, Sinseon-ro, Nam-gu, Busan 48547, Korea
Korean Journal of Chemical Engineering, July 2018, 35(7), 1547-1555(9), 10.1007/s11814-018-0059-z
Download PDF
Abstract
Pt electrocatalysts in high-temperature proton exchange membrane fuel cells (HT-PEMFCs) containing phosphoric acid (PA)-doped polymer membranes are prone to poisoning by leaked PA. We performed a preliminary density functional theory (DFT) study to investigate the relationship between the electronic structure of Pt surfaces and their adsorption of PA. Excess charge on Pt was found to weaken its bonding with the oxygen in PA, thus presenting a strategy for the fabrication of PA-resistant catalyst materials. Consequently, PtCu-alloy catalysts with various compositions were prepared by electrodeposition. The morphologies and crystalline structures of the alloys were strongly dependent on alloy composition. Moreover, the Pt atoms in the PtCu-alloy catalysts were found to be in an electronrich state, similar to that of the excessively charged Pt simulated in the DFT study. As a result, the oxygen reduction reaction activities of the PtCu-alloy catalysts were superior to that of a Pt-only catalyst, regardless of the presence of PA. In the absence of PA, the higher activity of the PtCu-alloy catalysts was ascribable to conventional alloying effects, while the increased activity in the presence of PA was largely due to the enhanced resistance to PA poisoning. Therefore, PtCu-alloy catalysts easily prepared by electrodeposition were found to be strong candidate materials for HT-PEMFC electrodes.
Keywords
References
Moradi M, Moheb A, Javanbakht M, Hooshyari K, Int. J. Hydrog. Energy, 41(4), 2896 (2016)
Quartarone E, Mustarelli P, Energy Environ. Sci., 5, 6436 (2012)
Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kaer SK, Int. J. Hydrog. Energy, 41(46), 21310 (2016)
Ma YL, Wainright JS, Litt MH, Savinell RF, J. Electrochem. Soc., 151(1), A8 (2004)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Quartarone E, Angioni S, Mustarelli P, Materials, 10, 687 (2017)
Liu YF, Lehnert W, Janssen H, Samsun RC, Stolten D, J. Power Sources, 311, 91 (2016)
Park HY, Lim DH, Yoo SJ, Kim HJ, Henkensmeier D, Kim JY, Ham HC, Jang JH, Scientific Reports, 7, 7186 (2017)
Floriano JB, Ticianelli EA, Gonzalez ER, J. Electroanal. Chem., 367(1-2), 157 (1994)
Gisbert R, Garcia G, Koper MTM, Electrochim. Acta, 55(27), 7961 (2010)
Li K, Li Y, Wang Y, He F, Jiao M, Tang H, Wu Z, J. Mater. Chem. A, 3, 11444 (2015)
Chlistunoff J, Pivovar B, J. Electrochem. Soc., 162(8), F890 (2015)
Jeong DC, Mun B, Lee H, Hwang SJ, Yoo SJ, Cho E, Lee Y, Song C, RSC Adv., 6, 60749 (2016)
Heider E, Ignatiev N, Jorissen L, Wenda A, Zeis R, Electrochem. Commun., 48, 24 (2014)
Lim JE, Lee UJ, Ahn SH, Cho E, Kim HJ, Jang JH, Son H, Kim SK, Appl. Catal. B: Environ., 165, 495 (2015)
Park HY, Ahn SH, Kim SK, Kim HJ, Henkensmeier D, Kim JY, Yoo SJ, Jang JH, J. Electrochem. Soc., 163(3), F210 (2016)
He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877 (2013)
Chung YH, Kim SJ, Chung DY, Lee MJ, Jang JH, Sung YE, Phys. Chem. Chem. Phys., 16, 13726 (2014)
Lee KS, Yoo SJ, Ahn D, Kim SK, Hwang SJ, Sung YE, Kim HJ, Cho E, Henkensmeier D, Lim TH, Jang JH, Electrochim. Acta, 56(24), 8802 (2011)
Antolini E, Appl. Catal. B: Environ., 217, 201 (2017)
Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P, Nano Lett., 12, 5885 (2012)
Min MK, Cho JH, Cho KW, Kim H, Electrochim. Acta, 45(25-26), 4211 (2000)
Yang H, Vogel W, Lamy C, Alonso-Vante N, J. Phys. Chem. B, 108(30), 11024 (2004)
Asara GG, Paz-Borbon LO, Baletto F, ACS Catal., 6, 4388 (2016)
Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS, Science, 350(6257), 185 (2015)
Yang Z, Pedireddy S, Lee HK, Liu Y, Tjiu WW, Phang IY, Ling XY, Chem. Mater., 28, 5080 (2016)
Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 45, 2897 (2006)
Zhao Y, Liu J, Zhao Y, Wang F, Song Y, J. Mater. Chem. A, 3, 20086 (2015)
Huang YF, Koper MTM, J. Phys. Chem. Lett., 8, 1152 (2017)
Nart FC, Iwasita T, Electrochim. Acta, 31, 385 (1992)
Chung YH, Chung DY, Jung N, Sung YE, J. Phys. Chem. Lett., 4, 1304 (2013)
Wang M, Zhang W, Wang J, Minett A, Lo V, Liu H, Chen J, J. Mater. Chem. A, 1, 2391 (2013)
Xu C, Zhang H, Hao Q, Duan H, ChemPlusChem, 79, 107 (2014)
Savizi ISP, Janik MJ, Electrochim. Acta, 56(11), 3996 (2011)
Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Nørskov JK, Phys. Chem. Chem. Phys., 9, 3241 (2007)
Foiles SM, Baskes MI, Daw MS, Phys. Rev. B, 33, 7983 (1986)
Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD, Rev. Mod. Phys., 64, 1045 (1992)
Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC, J. Phys. Condens. Matter, 14, 2717 (2002)
Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C, Phys. Rev. B, 46, 6671 (1992)
Vanderbilt D, Phys. Rev. B, 41, 7982 (1990)
Zeis R, Beilstein, J. Nanotechnol., 6, 68 (2015)
Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K, Angew. Chem.-Int. Edit., 48, 4217 (2009)
Xia BY, Wu HB, Wang X, Lou XW, J. Am. Chem. Soc., 134(34), 13934 (2012)
Ding J, Zhu X, Bu L, Yao J, Guo J, Guo S, Huang X, Chem. Commun., 51, 9722 (2015)
Chen S, Su H, Wang Y, Wu W, Zeng J, Angew. Chem.-Int. Edit., 54, 108 (2015)
Taylor E, Chen S, Tao J, Wu L, Zhu Y, Chen J, ChemSusChem, 6, 1863 (2013)
Yang WH, Zou LL, Huang QH, Zou ZQ, Hu YM, Yang H, J. Electrochem. Soc., 164(6), H331 (2017)
Xiao W, Cordeiro MAL, Gong M, Han L, Wang J, Bian C, Zhu J, Xinb HL, Wang D, J. Mater. Chem. A, 5, 9867 (2017)
Yoo SJ, Hwang SJ, Lee JG, Lee SC, Lim TH, Sung YE, Wieckowskid A, Kim SK, Energy Environ. Sci., 5, 7521 (2012)
Hammer B, Morikawa Y, Nørskov JK, Phys. Rev. Lett., 76, 2141 (1996)
Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 118, 2963 (2006)
Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK, J. Mol. Catal. A-Chem., 115, 421 (1997)
Su L, Shrestha S, Zhang Z, Mustaina W, Lei Y, J. Mater. Chem. A, 1, 12293 (2013)
Zhang H, Yi B, Zeng Y, Jiang S, Jiang Y, Bai Y, Shao Z, RSC Adv., 6, 40086 (2016)
Cao L, Zhang G, Lu W, Qin X, Shao Z, Yi B, RSC Adv., 6, 39993 (2016)
Fu S, Zhu C, Shi Q, Du D, Lin Y, Catal. Sci. Technol., 6, 5052 (2016)
Quartarone E, Mustarelli P, Energy Environ. Sci., 5, 6436 (2012)
Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kaer SK, Int. J. Hydrog. Energy, 41(46), 21310 (2016)
Ma YL, Wainright JS, Litt MH, Savinell RF, J. Electrochem. Soc., 151(1), A8 (2004)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Quartarone E, Angioni S, Mustarelli P, Materials, 10, 687 (2017)
Liu YF, Lehnert W, Janssen H, Samsun RC, Stolten D, J. Power Sources, 311, 91 (2016)
Park HY, Lim DH, Yoo SJ, Kim HJ, Henkensmeier D, Kim JY, Ham HC, Jang JH, Scientific Reports, 7, 7186 (2017)
Floriano JB, Ticianelli EA, Gonzalez ER, J. Electroanal. Chem., 367(1-2), 157 (1994)
Gisbert R, Garcia G, Koper MTM, Electrochim. Acta, 55(27), 7961 (2010)
Li K, Li Y, Wang Y, He F, Jiao M, Tang H, Wu Z, J. Mater. Chem. A, 3, 11444 (2015)
Chlistunoff J, Pivovar B, J. Electrochem. Soc., 162(8), F890 (2015)
Jeong DC, Mun B, Lee H, Hwang SJ, Yoo SJ, Cho E, Lee Y, Song C, RSC Adv., 6, 60749 (2016)
Heider E, Ignatiev N, Jorissen L, Wenda A, Zeis R, Electrochem. Commun., 48, 24 (2014)
Lim JE, Lee UJ, Ahn SH, Cho E, Kim HJ, Jang JH, Son H, Kim SK, Appl. Catal. B: Environ., 165, 495 (2015)
Park HY, Ahn SH, Kim SK, Kim HJ, Henkensmeier D, Kim JY, Yoo SJ, Jang JH, J. Electrochem. Soc., 163(3), F210 (2016)
He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877 (2013)
Chung YH, Kim SJ, Chung DY, Lee MJ, Jang JH, Sung YE, Phys. Chem. Chem. Phys., 16, 13726 (2014)
Lee KS, Yoo SJ, Ahn D, Kim SK, Hwang SJ, Sung YE, Kim HJ, Cho E, Henkensmeier D, Lim TH, Jang JH, Electrochim. Acta, 56(24), 8802 (2011)
Antolini E, Appl. Catal. B: Environ., 217, 201 (2017)
Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P, Nano Lett., 12, 5885 (2012)
Min MK, Cho JH, Cho KW, Kim H, Electrochim. Acta, 45(25-26), 4211 (2000)
Yang H, Vogel W, Lamy C, Alonso-Vante N, J. Phys. Chem. B, 108(30), 11024 (2004)
Asara GG, Paz-Borbon LO, Baletto F, ACS Catal., 6, 4388 (2016)
Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS, Science, 350(6257), 185 (2015)
Yang Z, Pedireddy S, Lee HK, Liu Y, Tjiu WW, Phang IY, Ling XY, Chem. Mater., 28, 5080 (2016)
Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 45, 2897 (2006)
Zhao Y, Liu J, Zhao Y, Wang F, Song Y, J. Mater. Chem. A, 3, 20086 (2015)
Huang YF, Koper MTM, J. Phys. Chem. Lett., 8, 1152 (2017)
Nart FC, Iwasita T, Electrochim. Acta, 31, 385 (1992)
Chung YH, Chung DY, Jung N, Sung YE, J. Phys. Chem. Lett., 4, 1304 (2013)
Wang M, Zhang W, Wang J, Minett A, Lo V, Liu H, Chen J, J. Mater. Chem. A, 1, 2391 (2013)
Xu C, Zhang H, Hao Q, Duan H, ChemPlusChem, 79, 107 (2014)
Savizi ISP, Janik MJ, Electrochim. Acta, 56(11), 3996 (2011)
Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Nørskov JK, Phys. Chem. Chem. Phys., 9, 3241 (2007)
Foiles SM, Baskes MI, Daw MS, Phys. Rev. B, 33, 7983 (1986)
Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD, Rev. Mod. Phys., 64, 1045 (1992)
Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC, J. Phys. Condens. Matter, 14, 2717 (2002)
Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C, Phys. Rev. B, 46, 6671 (1992)
Vanderbilt D, Phys. Rev. B, 41, 7982 (1990)
Zeis R, Beilstein, J. Nanotechnol., 6, 68 (2015)
Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K, Angew. Chem.-Int. Edit., 48, 4217 (2009)
Xia BY, Wu HB, Wang X, Lou XW, J. Am. Chem. Soc., 134(34), 13934 (2012)
Ding J, Zhu X, Bu L, Yao J, Guo J, Guo S, Huang X, Chem. Commun., 51, 9722 (2015)
Chen S, Su H, Wang Y, Wu W, Zeng J, Angew. Chem.-Int. Edit., 54, 108 (2015)
Taylor E, Chen S, Tao J, Wu L, Zhu Y, Chen J, ChemSusChem, 6, 1863 (2013)
Yang WH, Zou LL, Huang QH, Zou ZQ, Hu YM, Yang H, J. Electrochem. Soc., 164(6), H331 (2017)
Xiao W, Cordeiro MAL, Gong M, Han L, Wang J, Bian C, Zhu J, Xinb HL, Wang D, J. Mater. Chem. A, 5, 9867 (2017)
Yoo SJ, Hwang SJ, Lee JG, Lee SC, Lim TH, Sung YE, Wieckowskid A, Kim SK, Energy Environ. Sci., 5, 7521 (2012)
Hammer B, Morikawa Y, Nørskov JK, Phys. Rev. Lett., 76, 2141 (1996)
Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 118, 2963 (2006)
Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK, J. Mol. Catal. A-Chem., 115, 421 (1997)
Su L, Shrestha S, Zhang Z, Mustaina W, Lei Y, J. Mater. Chem. A, 1, 12293 (2013)
Zhang H, Yi B, Zeng Y, Jiang S, Jiang Y, Bai Y, Shao Z, RSC Adv., 6, 40086 (2016)
Cao L, Zhang G, Lu W, Qin X, Shao Z, Yi B, RSC Adv., 6, 39993 (2016)
Fu S, Zhu C, Shi Q, Du D, Lin Y, Catal. Sci. Technol., 6, 5052 (2016)