Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 21, 2018
Accepted April 30, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Anion-exchange-membrane-based electrochemical synthesis of ammonia as a carrier of hydrogen energy
Jong Hyun Park1 2
Hyung Chul Yoon1
Jong-Nam Kim1
Chan-Hee Jeong1
Eun-Young Jeong1
Dae Sik Yun1
Hana Yoon1
Sang Hyun Park1
Moon-Hee Han2†
Chung-Yul Yoo1†
1Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 2Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
mhhan@cnu.ac.kr
Korean Journal of Chemical Engineering, August 2018, 35(8), 1620-1625(6), 10.1007/s11814-018-0071-3
Download PDF
Abstract
With a 17.6 wt% hydrogen content, ammonia is a non-carbon-emitting, easy to store and transport, carrier of hydrogen energy. In this study, an anion-exchange-membrane-based (AEM-based) electrochemical cell was used to electrochemically synthesize ammonia from water and nitrogen under ambient conditions. The electrochemical cell was fabricated by attaching Pt/C to both sides of the AEM, and ammonia was generated by supplying nitrogen gas to the cathodic chamber of the cell. AC impedance and current-voltage (I-V) properties were analyzed in relation to the externally applied voltage, and ammonia-formation rates and faradaic efficiencies were determined. The maximum ammonia-formation rate was 1.96X10 -11 molㆍs-1ㆍcm-2 at an applied voltage of 2V, with a faradaic efficiency of 0.18%.
References
Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
Klerke A, Christensen CH, Nørskov JK, Vegge T, J. Mater. Chem., 18, 2304 (2008)
Zuttel A, Remhof A, Borgschulte A, Friedrichs O, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 3329 (2010)
Zhang T, Miyaoka H, Miyaoka H, Ichikawa T, Kojima Y, ACS Appl. Energy Mater., 1, 232 (2018)
Boudart M, Top. Catal., 1, 405 (1994)
Reese M, Marquart C, Malmali M, Wagner K, Buchanan E, McCormick A, Cussler EL, Ind. Eng, Chem. Res., 55, 3742 (2016)
Lan R, Irvine JTS, Tao SW, Int. J. Hydrog. Energy, 37(2), 1482 (2012)
Bicer Y, Dincer I, J. Clean Prod., 170, 1594 (2018)
Kim S, Song J, Lim H, Korean J. Chem. Eng., 35, 1 (2018)
Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
Singh AR, Rohr BA, Schwalbe JA, Cargnello M, Chan K, Jaramillo TF, Chorkendorff I, Nørskov JK, ACS Catal., 7, 706 (2017)
Marnellos G, Stoukides M, Science, 282, 98 (1998)
Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245 (2015)
Skodra A, Stoukides M, Solid State Ion., 180(23-25), 1332 (2009)
Yoo CY, Park JH, Kim K, Han JI, Jeong EY, Jeong CH, Yoon HC, Kim JN, ACS Sustainable Chem. Eng., 5, 7972 (2017)
Jeoung H, Kim JN, Yoo CY, Joo JH, Yu JH, Song KC, Sharma M, Yoon HC, Korean Chem. Eng. Res., 52(1), 58 (2014)
Kim K, Yoo CY, Kim JN, Yoon HC, Han JI, Korean J. Chem. Eng., 33(6), 1777 (2016)
Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 17, 1673 (2000)
Xu G, Liu R, Wang J, Sci. China Chem., 52, 1171 (2009)
Liu R, Chin. J. Chem., 28, 139 (2010)
Zhang Z, Zhong Z, Liu R, J. Rare Earth., 28, 556 (2010)
Lan R, Irvine JTS, Tao S, Sci. Rep., 3, 1145 (2013)
Lan R, Tao S, RSC Adv., 3, 18016 (2013)
Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699 (2017)
Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, ACS Sustainable Chem. Eng., 5, 7393 (2017)
Renner JN, Greenlee LF, Ayres KE, Herring AM, Electrochem. Soc. Interface, 24, 51 (2015)
Uribe FA, Gottesfeld S, Zawodzi TA, J. Electrochem. Soc., 149, 293 (2002)
Halseid R, Vie PJS, Tunold R, J. Power Sources, 154(2), 343 (2006)
Lan R, Tao S, Electrochem. Solid-State Lett., 13, 83 (2010)
Suzuki S, Muroyama H, Matsui T, Eguchi K, J. Power Sources, 208, 257 (2012)
Nash J, Yang X, Anibal J, Wang J, Yan Y, Xu B, J. Electrochem. Soc., 164, 1712 (2017)
Kong J, Lim A, Yoon C, Jang JH, Ham HC, Han J, Nam S, Kim D, Sung YE, Choi J, Park HS, ACS Sustainable Chem. Eng., 5, 10986 (2017)
Sheets BL, Botte GG, Chem. Commun. (2018), DOI:10.1039/c8cc00657a.
Hwang GJ, Lim SG, Bong SY, Ryu CH, Choi HS, Korean J. Chem. Eng., 32(9), 1896 (2015)
Ivancic I, Water Res., 18, 1143 (1984)
Aminot A, Kirkwood DS, Kerouel R, Marine Chem., 56, 59 (1997)
Felix EP, Cardoso AA, Instrument. Sci. Technol., 31, 283 (2003)
Crosby NT, Analyst, 93, 406 (1968)
Afkhami A, Zarei AR, Talanta, 62, 559 (2004)
Yoo CY, Yun DS, Park SY, Park J, Joo JH, Park H, Kwak M, Yu JH, Electrocatal., 7, 280 (2016)
Dale NV, Mann MD, Salehfar H, Dhirde AM, Han T, J. Fuel Cell Sci. Technol., 7, 31010 (2010)
Kishira S, Qing G, Suzu S, Kikuchi R, Takagaki A, Oyama ST, Int. J. Hydrog. Energy, 42(43), 26843 (2017)
Garcia-Herrero I, Alvarez-Guerra M, Irabien A, J. Chem. Technol. Biotechnol., 91(2), 507 (2016)
Sclafani A, Augugliaro V, Schiavello M, J. Electrochem. Soc., 130, 734 (1983)
Klerke A, Christensen CH, Nørskov JK, Vegge T, J. Mater. Chem., 18, 2304 (2008)
Zuttel A, Remhof A, Borgschulte A, Friedrichs O, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 3329 (2010)
Zhang T, Miyaoka H, Miyaoka H, Ichikawa T, Kojima Y, ACS Appl. Energy Mater., 1, 232 (2018)
Boudart M, Top. Catal., 1, 405 (1994)
Reese M, Marquart C, Malmali M, Wagner K, Buchanan E, McCormick A, Cussler EL, Ind. Eng, Chem. Res., 55, 3742 (2016)
Lan R, Irvine JTS, Tao SW, Int. J. Hydrog. Energy, 37(2), 1482 (2012)
Bicer Y, Dincer I, J. Clean Prod., 170, 1594 (2018)
Kim S, Song J, Lim H, Korean J. Chem. Eng., 35, 1 (2018)
Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
Singh AR, Rohr BA, Schwalbe JA, Cargnello M, Chan K, Jaramillo TF, Chorkendorff I, Nørskov JK, ACS Catal., 7, 706 (2017)
Marnellos G, Stoukides M, Science, 282, 98 (1998)
Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245 (2015)
Skodra A, Stoukides M, Solid State Ion., 180(23-25), 1332 (2009)
Yoo CY, Park JH, Kim K, Han JI, Jeong EY, Jeong CH, Yoon HC, Kim JN, ACS Sustainable Chem. Eng., 5, 7972 (2017)
Jeoung H, Kim JN, Yoo CY, Joo JH, Yu JH, Song KC, Sharma M, Yoon HC, Korean Chem. Eng. Res., 52(1), 58 (2014)
Kim K, Yoo CY, Kim JN, Yoon HC, Han JI, Korean J. Chem. Eng., 33(6), 1777 (2016)
Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 17, 1673 (2000)
Xu G, Liu R, Wang J, Sci. China Chem., 52, 1171 (2009)
Liu R, Chin. J. Chem., 28, 139 (2010)
Zhang Z, Zhong Z, Liu R, J. Rare Earth., 28, 556 (2010)
Lan R, Irvine JTS, Tao S, Sci. Rep., 3, 1145 (2013)
Lan R, Tao S, RSC Adv., 3, 18016 (2013)
Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699 (2017)
Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, ACS Sustainable Chem. Eng., 5, 7393 (2017)
Renner JN, Greenlee LF, Ayres KE, Herring AM, Electrochem. Soc. Interface, 24, 51 (2015)
Uribe FA, Gottesfeld S, Zawodzi TA, J. Electrochem. Soc., 149, 293 (2002)
Halseid R, Vie PJS, Tunold R, J. Power Sources, 154(2), 343 (2006)
Lan R, Tao S, Electrochem. Solid-State Lett., 13, 83 (2010)
Suzuki S, Muroyama H, Matsui T, Eguchi K, J. Power Sources, 208, 257 (2012)
Nash J, Yang X, Anibal J, Wang J, Yan Y, Xu B, J. Electrochem. Soc., 164, 1712 (2017)
Kong J, Lim A, Yoon C, Jang JH, Ham HC, Han J, Nam S, Kim D, Sung YE, Choi J, Park HS, ACS Sustainable Chem. Eng., 5, 10986 (2017)
Sheets BL, Botte GG, Chem. Commun. (2018), DOI:10.1039/c8cc00657a.
Hwang GJ, Lim SG, Bong SY, Ryu CH, Choi HS, Korean J. Chem. Eng., 32(9), 1896 (2015)
Ivancic I, Water Res., 18, 1143 (1984)
Aminot A, Kirkwood DS, Kerouel R, Marine Chem., 56, 59 (1997)
Felix EP, Cardoso AA, Instrument. Sci. Technol., 31, 283 (2003)
Crosby NT, Analyst, 93, 406 (1968)
Afkhami A, Zarei AR, Talanta, 62, 559 (2004)
Yoo CY, Yun DS, Park SY, Park J, Joo JH, Park H, Kwak M, Yu JH, Electrocatal., 7, 280 (2016)
Dale NV, Mann MD, Salehfar H, Dhirde AM, Han T, J. Fuel Cell Sci. Technol., 7, 31010 (2010)
Kishira S, Qing G, Suzu S, Kikuchi R, Takagaki A, Oyama ST, Int. J. Hydrog. Energy, 42(43), 26843 (2017)
Garcia-Herrero I, Alvarez-Guerra M, Irabien A, J. Chem. Technol. Biotechnol., 91(2), 507 (2016)
Sclafani A, Augugliaro V, Schiavello M, J. Electrochem. Soc., 130, 734 (1983)