Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 9, 2018
Accepted May 10, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10
1State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang, China 2Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Australia 3ARC Centre for LNG Futures, The University of Western Australia, Crawley, Australia
dut@smm.neu.edu.cn
Korean Journal of Chemical Engineering, August 2018, 35(8), 1642-1949(308), 10.1007/s11814-018-0078-9
Download PDF
Abstract
CO2 capture from humid flue gas is always costly due to the irreplaceable pretreatment of dehydration in current processes, which creates an urgent demand for moisture-insensitive adsorbents with considerable CO2 uptakes as well as remarkable H2O tolerances. In the present work, the microporous titanium silicate molecular sieve ETS-10 was synthesized with coal fly ash as the only silica source. The as-synthesized ETS-10 was characterized by X-ray diffraction, scanning electronic microscopy and infrared spectroscopy to verify its crystal morphology, in which neither impurity nor aggregation was observed. The following CO2 adsorption experiments on the thermal gravimetric analyzer demonstrated its similar CO2 adsorption capacity yet dramatical adsorption kinetics among some other microporous materials, e.g., potassium chabazite. These specific properties consequently guaranteed its favorable CO2 adsorption capacity even at high temperatures (1.35mmol/g at 393 K) and shortened the breakthrough time of single CO2 flow to less than 20 s. In CO2/H2O binary breakthrough experiments, the as-obtained ETS-10 still maintained excellent CO2 uptake of 0.81mmol/g at 323 K, regardless of the presence of water vapor, making it a promising substitute for direct CO2 separation from humid flue gases at practical conditions of post-combustion adsorption.
Keywords
References
Sun H, Wang Y, Chen J, Zhai J, Jing C, Zeng X, Ju H, Zhao N, Zhan M, Luo L, Quaternary International, 453, 74 (2017)
Riboldi L, Bolland O, Energy Procedia, 114, 2156 (2017)
Ga S, Jang H, Lee JH, Comput. Chem. Eng., 102, 188 (2017)
Clausse M, Merel J, Meunier F, Int. J. Greenhouse Gas Control, 5(5), 1206 (2011)
Ferrara G, Lanzini A, Leone P, Ho MT, Wiley DE, Energy, 130, 113 (2017)
Zhang DM, Wang HZ, Li CX, Meng H, Chem. Eng. Res. Des., 125, 361 (2017)
Jawad Z, Ahmad A, Low S, Lee R, Tan P, Procedia Eng., 148, 327 (2016)
Queen WL, Bloch ED, Lee JS, Howe JD, Mason JA, Gonzalez MI, Hudson MR, Lee K, Teat SJ, Neaton JB, Denver, CO, United States, March 22-26, 2015, 2015, PHYS-215.
Akhtar F, Ogunwumi S, Bergstrom L, Scientific Reports, 7(1), 10988 (2017)
Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR, Energy Environ. Sci., 6(1), 128 (2013)
Lozinska MM, Mangano E, Mowat JPS, Shepherd AM, Howe RF, Thompson SP, Parker JE, Brandani S, Wright PA, J. Am. Chem. Soc., 134(42), 17628 (2012)
Su F, Lu C, Energy Environ. Sci., 5(10), 9021 (2012)
Caskey SR, Wong-Foy AG, Matzger AJ, J. Am. Chem. Soc., 130(33), 10870 (2008)
Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80 (2013)
Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, Eddaoudi M, Nature Commun., 5, 4228 (2014)
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’keeffe M, Yaghi OM, Science, 319(5865), 939 (2008)
Nguyen NT, Furukawa H, Gandara F, Nguyen HT, Cordova KE, Yaghi OM, Angew. Chem.-Int. Edit., 126(40), 10821 (2014)
Anderson MW, Terasaki O, Ohsuna T, Philippou A, Mackay SP, Ferreira A, Rocha J, Lidin S, Nature, 367(6461), 347 (1994)
Uma S, Rodrigues S, Martyanov IN, Klabunde KJ, Microporous Mesoporous Mater., 67(2), 181 (2004)
Choi JH, Kim SD, Kwon YJ, Kim WJ, Microporous Mesoporous Mater., 96(1), 157 (2006)
Shi M, Avila AM, Yang F, Kuznicki TM, Kuznicki SM, Chem. Eng. Sci., 66(12), 2817 (2011)
Datta SJ, Khumnoon C, Lee ZH, Moon WK, Docao S, Nguyen TH, Hwang IC, Moon D, Oleynikov P, Terasaki O, Yoon KB, Science, 350(6258), 302 (2015)
Glueckauf E, Coates J, J. Chem. Soc., 1315 (1947).
Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
Liu LY, Singh R, Li G, Xiao P, Webley P, Zhai YC, J. Hazard. Mater., 195, 340 (2011)
Lv L, Su F, Zhao X, Microporous Mesoporous Mater., 101(3), 355 (2007)
Zhou Q, Duan Y, Zhu C, Zhang J, She M, Wei H, Hong Y, Korean J. Chem. Eng., 32(7), 1405 (2015)
Haroon H, Ashfaq T, Gardazi SMH, Sherazi TA, Ali M, Rashid N, Bilal M, Korean J. Chem. Eng., 33(10), 2898 (2016)
Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302 (2017)
Falayi T, Ntuli F, Korean J. Chem. Eng., 32(4), 707 (2015)
Lee JW, Nguyen TPB, Moon H, Korean J. Chem. Eng., 23(5), 812 (2006)
Li G, Xiao P, Webley P, Langmuir, 25(18), 10666 (2009)
Riboldi L, Bolland O, Energy Procedia, 114, 2156 (2017)
Ga S, Jang H, Lee JH, Comput. Chem. Eng., 102, 188 (2017)
Clausse M, Merel J, Meunier F, Int. J. Greenhouse Gas Control, 5(5), 1206 (2011)
Ferrara G, Lanzini A, Leone P, Ho MT, Wiley DE, Energy, 130, 113 (2017)
Zhang DM, Wang HZ, Li CX, Meng H, Chem. Eng. Res. Des., 125, 361 (2017)
Jawad Z, Ahmad A, Low S, Lee R, Tan P, Procedia Eng., 148, 327 (2016)
Queen WL, Bloch ED, Lee JS, Howe JD, Mason JA, Gonzalez MI, Hudson MR, Lee K, Teat SJ, Neaton JB, Denver, CO, United States, March 22-26, 2015, 2015, PHYS-215.
Akhtar F, Ogunwumi S, Bergstrom L, Scientific Reports, 7(1), 10988 (2017)
Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR, Energy Environ. Sci., 6(1), 128 (2013)
Lozinska MM, Mangano E, Mowat JPS, Shepherd AM, Howe RF, Thompson SP, Parker JE, Brandani S, Wright PA, J. Am. Chem. Soc., 134(42), 17628 (2012)
Su F, Lu C, Energy Environ. Sci., 5(10), 9021 (2012)
Caskey SR, Wong-Foy AG, Matzger AJ, J. Am. Chem. Soc., 130(33), 10870 (2008)
Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80 (2013)
Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, Eddaoudi M, Nature Commun., 5, 4228 (2014)
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’keeffe M, Yaghi OM, Science, 319(5865), 939 (2008)
Nguyen NT, Furukawa H, Gandara F, Nguyen HT, Cordova KE, Yaghi OM, Angew. Chem.-Int. Edit., 126(40), 10821 (2014)
Anderson MW, Terasaki O, Ohsuna T, Philippou A, Mackay SP, Ferreira A, Rocha J, Lidin S, Nature, 367(6461), 347 (1994)
Uma S, Rodrigues S, Martyanov IN, Klabunde KJ, Microporous Mesoporous Mater., 67(2), 181 (2004)
Choi JH, Kim SD, Kwon YJ, Kim WJ, Microporous Mesoporous Mater., 96(1), 157 (2006)
Shi M, Avila AM, Yang F, Kuznicki TM, Kuznicki SM, Chem. Eng. Sci., 66(12), 2817 (2011)
Datta SJ, Khumnoon C, Lee ZH, Moon WK, Docao S, Nguyen TH, Hwang IC, Moon D, Oleynikov P, Terasaki O, Yoon KB, Science, 350(6258), 302 (2015)
Glueckauf E, Coates J, J. Chem. Soc., 1315 (1947).
Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
Liu LY, Singh R, Li G, Xiao P, Webley P, Zhai YC, J. Hazard. Mater., 195, 340 (2011)
Lv L, Su F, Zhao X, Microporous Mesoporous Mater., 101(3), 355 (2007)
Zhou Q, Duan Y, Zhu C, Zhang J, She M, Wei H, Hong Y, Korean J. Chem. Eng., 32(7), 1405 (2015)
Haroon H, Ashfaq T, Gardazi SMH, Sherazi TA, Ali M, Rashid N, Bilal M, Korean J. Chem. Eng., 33(10), 2898 (2016)
Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302 (2017)
Falayi T, Ntuli F, Korean J. Chem. Eng., 32(4), 707 (2015)
Lee JW, Nguyen TPB, Moon H, Korean J. Chem. Eng., 23(5), 812 (2006)
Li G, Xiao P, Webley P, Langmuir, 25(18), 10666 (2009)