Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 6, 2018
Accepted May 11, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A visible-light-active BiFeO3/ZnS nanocomposite for photocatalytic conversion of greenhouse gases
Catal. Res. Cen., Chem. Eng. Department, Razi University, Kermanshah 67149-67246, Iran
sharif@razi.ac.ir
Korean Journal of Chemical Engineering, August 2018, 35(8), 1735-1740(6), 10.1007/s11814-018-0083-z
Download PDF
Abstract
Given the changes in environmental conditions in the world, photocatalytic conversion of greenhouse gases is of great interest today. Our aim was to increase the photocatalytic efficiency of BiFeO3/ZnS (p-n heterojunction photocatalyst) by varying the molar ratio of ZnS to perovskite structure of BiFeO3 using hydrothermal synthesis. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), FT-IR spectroscopy showed the small crystal size and suitable distribution of ZnS particles on the BiFeO3 structure. The results of UV-visible, and photoluminescence (PL) spectroscopy analyses showed the good behavior of p-n heterostructure in absorption of visible light and lowering electron-hole recombination. The best visible light photocatalytic efficiency of CO2 reduction, 24.8%, was obtained by an equimolar ratio of BiFeO3/ZnS.
References
Chang X, Zheng J, Gondal MA, Ji G, Res. Chem. Intermed., 41(2), 739 (2015)
Rodhe H, Science, 248, 1217 (1990)
Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669 (2017)
Subramonian W, Wu TY, Chai SP, J. Environ. Manage., 187, 298 (2017)
Teh CY, Wu TY, Juan JC, Chem. Eng. J., 317, 586 (2017)
Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665 (2016)
Nuraje N, Su K, Nanoscale, 5, 8752 (2013)
Kim JK, Kim SS, Kim WJ, Mater. Lett., 59, 4006 (2005)
Gao T, Chen Z, Zhu YX, Niu F, Huang QL, Qin LS, Sun XG, Huang YX, Mater. Res. Bull., 59, 6 (2014)
Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W, Appl. Catal. B: Environ., 178, 170 (2015)
Zhang Y, Schultz AM, Salvador PA, Rohrer GS, J. Mater. Chem., 21, 4168 (2011)
Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopart. Res., 15, 1848 (2013)
Kaur S, Sharma S, Kansal SK, Superlattices Microstruct., 98, 86 (2016)
Kashinath L, Namratha K, Byrappa K, J. Alloy. Compd., 695, 799 (2017)
Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopartic. Res., 15, 1848 (2013)
Iranmanesh P, Saeednia S, Nourzpoor M, Chin. Phys. B, 24(4), 046104 (2015)
Matovic B, Pantic J, Lukovic J, Cebela M, Dmitrovic S, Mirkovic M, Prekajski M, Ceram. Int., 42, 615 (2016)
Zhang Y, Zheng A, Yang X, He H, Fan Y, Yao C, Cryst. Eng. Comm., 14, 8432 (2012)
Som KK, Molla S, Bose K, Chaudhuri BK, Phys. Rev. B, 45, 4 (1992)
Lotey GS, Verma NK, Mater. Sci. Semiconduc. Proces., 21, 206 (2014)
Cebela M, Zagorac D, Batalovic K, Radkovic J, Stojadinovic B, Spasojevic V, Hercigonja R, Ceram. Int., 43, 1256 (2017)
Yousefi R, Kamaluddin B, Ghoranneviss M, Hajakbari F, Appl. Surf. Sci., 255(15), 6985 (2009)
Soga T, Nanostructured materials for solar energy conversion, Elsevier. 1st Ed. (2006).
Li L, Salvador PA, Rohre GS, Nanoscale, 6, 24 (2014)
Yazdanpour N, Sharifnia S, Sol. Energy Mater. Sol. Cells, 118, 1 (2013)
Mahmodi G, Sharifnia S, Madani M, Vatanpour V, Solar Energy, 97, 186 (2013)
Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N, J. Taiwan Inst. Chem. Eng., 44, 239 (2013)
Karamian E, Sharifnia S, J. CO2 Util., 16, 194 (2016)
Rodhe H, Science, 248, 1217 (1990)
Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669 (2017)
Subramonian W, Wu TY, Chai SP, J. Environ. Manage., 187, 298 (2017)
Teh CY, Wu TY, Juan JC, Chem. Eng. J., 317, 586 (2017)
Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665 (2016)
Nuraje N, Su K, Nanoscale, 5, 8752 (2013)
Kim JK, Kim SS, Kim WJ, Mater. Lett., 59, 4006 (2005)
Gao T, Chen Z, Zhu YX, Niu F, Huang QL, Qin LS, Sun XG, Huang YX, Mater. Res. Bull., 59, 6 (2014)
Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W, Appl. Catal. B: Environ., 178, 170 (2015)
Zhang Y, Schultz AM, Salvador PA, Rohrer GS, J. Mater. Chem., 21, 4168 (2011)
Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopart. Res., 15, 1848 (2013)
Kaur S, Sharma S, Kansal SK, Superlattices Microstruct., 98, 86 (2016)
Kashinath L, Namratha K, Byrappa K, J. Alloy. Compd., 695, 799 (2017)
Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopartic. Res., 15, 1848 (2013)
Iranmanesh P, Saeednia S, Nourzpoor M, Chin. Phys. B, 24(4), 046104 (2015)
Matovic B, Pantic J, Lukovic J, Cebela M, Dmitrovic S, Mirkovic M, Prekajski M, Ceram. Int., 42, 615 (2016)
Zhang Y, Zheng A, Yang X, He H, Fan Y, Yao C, Cryst. Eng. Comm., 14, 8432 (2012)
Som KK, Molla S, Bose K, Chaudhuri BK, Phys. Rev. B, 45, 4 (1992)
Lotey GS, Verma NK, Mater. Sci. Semiconduc. Proces., 21, 206 (2014)
Cebela M, Zagorac D, Batalovic K, Radkovic J, Stojadinovic B, Spasojevic V, Hercigonja R, Ceram. Int., 43, 1256 (2017)
Yousefi R, Kamaluddin B, Ghoranneviss M, Hajakbari F, Appl. Surf. Sci., 255(15), 6985 (2009)
Soga T, Nanostructured materials for solar energy conversion, Elsevier. 1st Ed. (2006).
Li L, Salvador PA, Rohre GS, Nanoscale, 6, 24 (2014)
Yazdanpour N, Sharifnia S, Sol. Energy Mater. Sol. Cells, 118, 1 (2013)
Mahmodi G, Sharifnia S, Madani M, Vatanpour V, Solar Energy, 97, 186 (2013)
Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N, J. Taiwan Inst. Chem. Eng., 44, 239 (2013)
Karamian E, Sharifnia S, J. CO2 Util., 16, 194 (2016)