Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 8, 2018
Accepted May 2, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation of graphene aerogel-poly(3,4-ethylenedioxythiophene) conductive composite by using simultaneous co-vaporized vapor phase polymerization
Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, Korea
Korean Journal of Chemical Engineering, August 2018, 35(8), 1756-1763(8), 10.1007/s11814-018-0073-1
Download PDF
Abstract
We prepared spherical reduced graphene oxide aerogels (rGOA) through freeze casting and thermal reduction for the fabrication of carbon-conducting polymer composites with excellent electrical and mechanical properties.The rGOA-poly(3,4-ethylenedioxythiophene) (PEDOT) or rGOA-PEDOT-SiO2 composites were prepared by simultaneous co-vaporized vapor phase polymerization (SC-VPP). The rGOA spherical particles, prepared by freeze casting of GO solution, had a radially oriented pore structure at the center of its cross section and increasing density of GO sheet towards its center because the temperature gradient of the droplet of the GO solution rapidly freezes from the water outside the droplet during the process. The morphology of the rGOA-PEDOT-SiO2 composites prepared using SCVPP was more spherical compared to rGOA-PEDOT composites, and the orientation of the cross-pore structure was well-developed. Moreover, micrometer-sized conductive PEDOT-SiO2 hybrid spheres could be formed on the composite’s surface by controlling the amount of FTS oxidant. The rGOA-PEDOT-SiO2 composites showed lower resistance values and higher current densities at the same voltage than rGOA or rGOA-PEDOT composites. This can be attributed to the surface area of the particle’s surface, which is enlarged due to the presence of the microspheres, which_x000D_
can cause the widening of the contact area with the electrode to facilitate better electron migration.
Keywords
References
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 22, 666 (2004)
Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Tang LC, Wa YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ, Carbon, 60, 16 (2013)
O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN, J. Phys. Chem. C, 115, 5422 (2011)
Guardia L, Fernandez-Merino MJ, Paredes JI, Solis-Fernandez P, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Carbon, 49(5), 1653 (2011)
Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM, Nat. Mater., 10(6), 424 (2011)
Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF, J. Am. Chem. Soc., 132(40), 14067 (2010)
Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS, Adv. Mater., 25(15), 2219 (2013)
Kabiri S, Tran DNH, Altalhi T, Losic D, Carbon, 80, 523 (2014)
Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH, J. Mater. Chem., 22, 767 (2012)
Ouyang A, Wang C, Wu S, Shi E, Zhao W, Cao A, Wu D, ACS Appl. Mater. Inter., 7, 14439 (2015)
Sun HY, Xu Z, Gao C, Adv. Mater., 25(18), 2554 (2013)
Zhao Y, Liu J, Hu Y, Cheng HH, Hu CG, Jiang CC, Jiang L, Cao AY, Qu LT, Adv. Mater., 25(4), 591 (2013)
Zhou Q, Li Y, Huang L, Li C, Shi G, J. Mater. Chem. A, 2, 17489 (2014)
Ching CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
Ouyang A, Cao A, Hu S, Li Y, Xu R, Wei J, Zhu H, Wu D, ACS Appl. Mater. Inter., 8, 11179 (2016)
Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang GW, Chen C, Gumbs RW, Chem. Mater., 7, 969 (1995)
Sommers AG, World Patent, WO 99/58464 (1998).
Han YH, Travas-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
Yim JH, Compo. Sci. Technol., 86, 45 (2013)
Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
Ko YS, Yim JH, Polymer, 93, 167 (2016)
Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
Choi JS, Park JS, Kim B, Lee BT, Yim JH, Polymer, 120, 95 (2017)
Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
Lock JP, Im SG, Gleason KK, Macromolecules, 39(16), 5326 (2006)
Im SG, Gleason KK, Macromolecules, 40(18), 6552 (2007)
Asatekin A, Barr MC, Baxamura SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK, Mater. Today, 13(5), 26 (2010)
Deville S, Saiz E, Nalla ERK, Tomsia AP, Science, 311, 515 (2006)
Ouyang A, Liang J, RSC Adv., 4, 25835 (2014)
Klotz M, Amirouche I, Guizard C, Viazzi C, Deville S, Adv. Eng. Mater., 14, 1123 (2012)
Jung SG, Cho KY, Yim JH, J. Ind. Eng. Chem., 63, 95 (2018)
Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Tang LC, Wa YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ, Carbon, 60, 16 (2013)
O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN, J. Phys. Chem. C, 115, 5422 (2011)
Guardia L, Fernandez-Merino MJ, Paredes JI, Solis-Fernandez P, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Carbon, 49(5), 1653 (2011)
Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM, Nat. Mater., 10(6), 424 (2011)
Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF, J. Am. Chem. Soc., 132(40), 14067 (2010)
Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS, Adv. Mater., 25(15), 2219 (2013)
Kabiri S, Tran DNH, Altalhi T, Losic D, Carbon, 80, 523 (2014)
Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH, J. Mater. Chem., 22, 767 (2012)
Ouyang A, Wang C, Wu S, Shi E, Zhao W, Cao A, Wu D, ACS Appl. Mater. Inter., 7, 14439 (2015)
Sun HY, Xu Z, Gao C, Adv. Mater., 25(18), 2554 (2013)
Zhao Y, Liu J, Hu Y, Cheng HH, Hu CG, Jiang CC, Jiang L, Cao AY, Qu LT, Adv. Mater., 25(4), 591 (2013)
Zhou Q, Li Y, Huang L, Li C, Shi G, J. Mater. Chem. A, 2, 17489 (2014)
Ching CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
Ouyang A, Cao A, Hu S, Li Y, Xu R, Wei J, Zhu H, Wu D, ACS Appl. Mater. Inter., 8, 11179 (2016)
Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang GW, Chen C, Gumbs RW, Chem. Mater., 7, 969 (1995)
Sommers AG, World Patent, WO 99/58464 (1998).
Han YH, Travas-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
Yim JH, Compo. Sci. Technol., 86, 45 (2013)
Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
Ko YS, Yim JH, Polymer, 93, 167 (2016)
Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
Choi JS, Park JS, Kim B, Lee BT, Yim JH, Polymer, 120, 95 (2017)
Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
Lock JP, Im SG, Gleason KK, Macromolecules, 39(16), 5326 (2006)
Im SG, Gleason KK, Macromolecules, 40(18), 6552 (2007)
Asatekin A, Barr MC, Baxamura SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK, Mater. Today, 13(5), 26 (2010)
Deville S, Saiz E, Nalla ERK, Tomsia AP, Science, 311, 515 (2006)
Ouyang A, Liang J, RSC Adv., 4, 25835 (2014)
Klotz M, Amirouche I, Guizard C, Viazzi C, Deville S, Adv. Eng. Mater., 14, 1123 (2012)
Jung SG, Cho KY, Yim JH, J. Ind. Eng. Chem., 63, 95 (2018)