Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 14, 2018
Accepted June 4, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Characterization of sulfate-reducing bacteria anaerobic granular sludge and granulometric analysis with grey relation
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
Korean Journal of Chemical Engineering, September 2018, 35(9), 1829-1835(7), 10.1007/s11814-018-0092-y
Download PDF
Abstract
We constructed a bench-scale up-flow anaerobic sludge reactor to systematically investigate the physicochemical characteristics of sulfate-reducing bacteria (SRB) anaerobic granular sludge and evaluate the granular size by a grey relational analysis. Results indicated that the granulation proportion was improved from 17.9% to 68.7% with the sulfate reduction efficiency larger than 90% under gradually shortened hydraulic retention time (HRT) and increased organic loading. Larger SRB granule sludge showed a higher specific gravity and settling velocity. The seed sludge was negatively charged, and the surface charge decreased with the incremental granular diameter. The maximal hydrophobicity and granulation proportion were 69.9% and 42.4%, respectively, for the granular diameter ranging from 1.5 to 2.5 mm. Extracellular polymeric substance (EPS) of the sludge exhibited the highest ratio of protein to polysaccharide (PN/PS) for the granular diameter in the range of 0.5 to 1.5mm. Based on the grey relational analysis of the SRB anaerobic sludge granulation, the correlation degree of the inherent influencing factors was PN/PS>surface charge> hydrophobicity. The theoretical evaluation would be conducive to granulation control during the potential application.
Keywords
References
Zhang JX, Zhang YB, Quan X, Liu YW, An XL, Chen S, Zhao HM, Chem. Eng. J., 174(1), 159 (2011)
Hao TW, Luo JH, Li W, Mackey HR, Liu RL, Morito GR, Chen GH, Water Res., 71, 74 (2015)
Lens PNL, Visser A, Janssen AJH, Hulshoff LW, Lettinga G, Sci. Technol., 28, 41 (1998)
Blazquez E, Gabriel D, Baeza JA, Guisasola A, Water Res., 105, 395 (2016)
Liu YW, Zhang YB, Ni BJ, Water Res., 75, 292 (2015)
Zhu L, Zhou JH, Lv MI, Yu HT, Zhao H, Xu XY, Chemosphere, 121, 26 (2015)
Liu Y, Tay JH, Biotechnol. Adv., 22, 533 (2004)
Jing ZQ, Hu Y, Niu QG, Liu YY, Li YY, Wang XCC, Bioresour. Technol., 137, 349 (2013)
Kieu HTQ, Muller E, Horn H, Water Res., 45, 3863 (2011)
Li J, Yu L, Yu DS, Wang D, Zhang PY, Ji ZG, Biodegradation, 25, 127 (2014)
Tiwari MK, Guha S, Harendranath CS, Tripathi S, Appl. Microbiol. Biotechnol., 71(2), 145 (2006)
Abbasi T, Abbasi SA, Renew. Sust. Energ. Rev., 16, 1696 (2012)
Appels L, Baeyens J, Degreve J, Dewil R, Prog. Energy Combust. Sci., 34(6), 755 (2008)
Mirzoyan N, Gross A, Water Res., 47, 2843 (2013)
Singh KS, Viraraghavan T, Water Sci. Technol., 48, 211 (2003)
Isik M, Sponza DT, Bioresour. Technol., 96(5), 633 (2005)
Erguder TH, Guven E, Demirer GN, Chemosphere, 50, 165 (2003)
Jia XS, Fang HH, Furumai H, Water Sci. Technol., 34, 309 (1996)
Li XY, Yang SF, Water Res., 41, 1022 (2007)
Sheng GP, Yu HQ, Li XY, Biotechnol. Adv., 28, 882 (2010)
Quarmby J, Forster CF, Water Res., 29, 2449 (1995)
Seviour T, Yuan Z, Loosdrecht VMCM, Water Res., 46, 4803 (2012)
Morgan JM, Forster CF, Evison L, Water Res., 24, 743 (1990)
Deng JL, J. Grey. Syst., 1, 1 (1989)
Zhang C, Zhang H, J. Environ. Sci, 25, 710 (2013)
Zeng GM, Jiang R, Huang GH, Xu M, Li JB, J. Environ. Manage., 82, 250 (2007)
Kadier A, Abdeshahian P, Simayi Y, Ismail M, Hamid AA, Kalil MS, Energy, 90, 1556 (2015)
Xu J, Sheng GP, Luo HW, Fang F, Li WW, Zeng RJ, Tong ZH, Yu HQ, Water Res., 45, 674 (2011)
Schmidt JE, Ahring BK, Biotechnol. Bioeng., 49(3), 229 (1996)
Guo J, Kang Y, Feng Y, J. Environ. Manage., 203, 278 (2017)
APHA, American Public Health Association, Washington, DC (2005).
Bai H, Kang Y, Quan HE, Han Y, Sun J, Feng Y, Bioresour. Technol., 128, 818 (2013)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265 (1951)
Chang IS, Lee CH, Desalination, 120(3), 221 (1998)
Sun M, Li WW, Yu HQ, Harada H, Appl. Microbiol. Biotechnol., 96(6), 1577 (2012)
Bai H, Kang Y, Quan HE, Han Y, Sun J, Feng Y, J. Environ. Manage., 129, 350 (2013)
Hao T, Lu H, Chui HK, Loosdrecht VMCM, Chen GH, Water Sci. Technol., 68, 560 (2013)
Ye JX, Mu YJ, Cheng X, Sun DZ, Bioresour. Technol., 102(9), 5498 (2011)
Willow MA, Cohen RRH, J. Environ. Qual., 32, 1212 (2003)
Beeftink HH, Heuvel JVD, The Netherlands (1988).
Wang ZP, Liu LL, Yao J, Cai WM, Chemosphere, 63, 1728 (2006)
Hao TW, Luo JH, Li W, Mackey HR, Liu RL, Morito GR, Chen GH, Water Res., 71, 74 (2015)
Lens PNL, Visser A, Janssen AJH, Hulshoff LW, Lettinga G, Sci. Technol., 28, 41 (1998)
Blazquez E, Gabriel D, Baeza JA, Guisasola A, Water Res., 105, 395 (2016)
Liu YW, Zhang YB, Ni BJ, Water Res., 75, 292 (2015)
Zhu L, Zhou JH, Lv MI, Yu HT, Zhao H, Xu XY, Chemosphere, 121, 26 (2015)
Liu Y, Tay JH, Biotechnol. Adv., 22, 533 (2004)
Jing ZQ, Hu Y, Niu QG, Liu YY, Li YY, Wang XCC, Bioresour. Technol., 137, 349 (2013)
Kieu HTQ, Muller E, Horn H, Water Res., 45, 3863 (2011)
Li J, Yu L, Yu DS, Wang D, Zhang PY, Ji ZG, Biodegradation, 25, 127 (2014)
Tiwari MK, Guha S, Harendranath CS, Tripathi S, Appl. Microbiol. Biotechnol., 71(2), 145 (2006)
Abbasi T, Abbasi SA, Renew. Sust. Energ. Rev., 16, 1696 (2012)
Appels L, Baeyens J, Degreve J, Dewil R, Prog. Energy Combust. Sci., 34(6), 755 (2008)
Mirzoyan N, Gross A, Water Res., 47, 2843 (2013)
Singh KS, Viraraghavan T, Water Sci. Technol., 48, 211 (2003)
Isik M, Sponza DT, Bioresour. Technol., 96(5), 633 (2005)
Erguder TH, Guven E, Demirer GN, Chemosphere, 50, 165 (2003)
Jia XS, Fang HH, Furumai H, Water Sci. Technol., 34, 309 (1996)
Li XY, Yang SF, Water Res., 41, 1022 (2007)
Sheng GP, Yu HQ, Li XY, Biotechnol. Adv., 28, 882 (2010)
Quarmby J, Forster CF, Water Res., 29, 2449 (1995)
Seviour T, Yuan Z, Loosdrecht VMCM, Water Res., 46, 4803 (2012)
Morgan JM, Forster CF, Evison L, Water Res., 24, 743 (1990)
Deng JL, J. Grey. Syst., 1, 1 (1989)
Zhang C, Zhang H, J. Environ. Sci, 25, 710 (2013)
Zeng GM, Jiang R, Huang GH, Xu M, Li JB, J. Environ. Manage., 82, 250 (2007)
Kadier A, Abdeshahian P, Simayi Y, Ismail M, Hamid AA, Kalil MS, Energy, 90, 1556 (2015)
Xu J, Sheng GP, Luo HW, Fang F, Li WW, Zeng RJ, Tong ZH, Yu HQ, Water Res., 45, 674 (2011)
Schmidt JE, Ahring BK, Biotechnol. Bioeng., 49(3), 229 (1996)
Guo J, Kang Y, Feng Y, J. Environ. Manage., 203, 278 (2017)
APHA, American Public Health Association, Washington, DC (2005).
Bai H, Kang Y, Quan HE, Han Y, Sun J, Feng Y, Bioresour. Technol., 128, 818 (2013)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265 (1951)
Chang IS, Lee CH, Desalination, 120(3), 221 (1998)
Sun M, Li WW, Yu HQ, Harada H, Appl. Microbiol. Biotechnol., 96(6), 1577 (2012)
Bai H, Kang Y, Quan HE, Han Y, Sun J, Feng Y, J. Environ. Manage., 129, 350 (2013)
Hao T, Lu H, Chui HK, Loosdrecht VMCM, Chen GH, Water Sci. Technol., 68, 560 (2013)
Ye JX, Mu YJ, Cheng X, Sun DZ, Bioresour. Technol., 102(9), 5498 (2011)
Willow MA, Cohen RRH, J. Environ. Qual., 32, 1212 (2003)
Beeftink HH, Heuvel JVD, The Netherlands (1988).
Wang ZP, Liu LL, Yao J, Cai WM, Chemosphere, 63, 1728 (2006)