Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 5, 2018
Accepted May 11, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
tiansenlin@outlook.com
Korean Journal of Chemical Engineering, September 2018, 35(9), 1932-1940(9), 10.1007/s11814-018-0084-y
Download PDF
Abstract
Supercritical water (SCW) impregnation is an efficient and feasible method that has been used to prepare highly dispersed supported catalysts, but few studies have investigated the stability of support materials in supercritical water. Thus, our aim was to investigate the hydrothermal stability of zeolite supports (ZSM-5, TS-1, ZSM-35, HY, 13X, Beta, SAPO-11 and SAPO-34) as model compounds in supercritical water. Results showed that almost all of zeolites suffered from crystallinity change, structural properties degradation, obvious desilication and dealumination. The decrease of surface areas and the collapse of crystalline structures in HY, 13X, Beta, SAPO-11 and SAPO-34 were more serious compared to ZSM-5, ZSM-35 and TS-1. The micropore areas and acidity of all SCW-treated zeolites were reduced. 13X with lower Si/Al ratio had higher hydrothermal stability than HY due to the formation of extra-framework Al (EFAL). EFAl also generated strong Lewis acid sites determined by ammonia temperature-programmed desorption and 27Al magic angle spinning nuclear magnetic resonance. Desilication and dealumination were simultaneous, and led to the increase of framework Si/Al ratio. ZSM zeolites (ZSM-5, ZSM-35 and TS-1) had higher hydrothermal stability than HY, 13X, Beta, SAPO-11 and SAPO-34 in SCW.
Keywords
References
Sue K, Murata K, Kimura K, Arai K, Green Chem., 5, 659 (2003)
Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T, Green Chem., 8, 634 (2006)
Adschiri T, Lee YW, Goto M, Takami S, Green Chem., 13, 1380 (2011)
Aimable A, Muhr H, Gentric C, Bernard F, Le Cras F, Aymes D, Powder Technol., 190(1-2), 99 (2009)
Lee JW, Lee JH, Viet TT, Lee JY, Kim JS, Lee CH, Electrochim. Acta, 55, 3051 (2010)
Rangappa D, Naka T, Ohara S, Adschiri T, Cryst. Growth Des., 10, 11 (2010)
Li H, Arita T, Takami S, Adschiri T, Prog. Cryst. Growth Ch., 57, 117 (2011)
Hosseinpour M, Amiri H, Ahmadi SJ, Mousavian MA, J. Supercrit. Fluids, 107, 479 (2016)
Ziegler KJ, Doty RC, Johnston KP, Korgel BA, J. Am. Ceram. Soc., 123, 7797 (2001)
Otsu J, Oshima Y, J. Supercrit. Fluids, 33(1), 61 (2005)
Sawai O, Oshima Y, J. Supercrit. Fluids, 47(2), 240 (2008)
Sawai O, Oshima Y, J. Mater. Sci., 43(7), 2293 (2008)
Zhao D, Han E, Wu X, Guan H, Mater. Lett., 60, 3544 (2006)
Xu CB, Teja AS, J. Supercrit. Fluids, 39(1), 135 (2006)
Qiu B, Han LN, Wang JC, Chang LP, Bao WR, Energy Fuels, 25, 591 (2011)
Wang JC, Qiu BA, Han LN, Feng G, Hu YF, Chang LP, Bao WR, J. Hazard. Mater., 213, 184 (2012)
Lin KS, Wang HP, Yang YW, Chemosphere, 39, 1385 (1999)
Lin KS, Wang HP, Langmuir, 16(6), 2627 (2000)
Lin KS, Wang HP, Appl. Catal. B: Environ., 22(4), 261 (1999)
Mo N, Tandar W, Savage PE, J. Supercrit. Fluids, 102, 73 (2015)
Duan PG, Xu YP, Wang F, Wang B, Yan WH, Biochem. Eng. J., 116, 105 (2016)
Tomita K, Koda S, Oshima Y, Ind. Eng. Chem. Res., 41(14), 3341 (2002)
Lu YJ, Zhu YM, Li S, Zhang XM, Guo LJ, Biomass Bioenerg., 67, 125 (2014)
Karakus Y, Aynaci F, Kipcak E, Akgun M, Int. J. Hydrog. Energy, 38(18), 7298 (2013)
Akizuki M, Oshima Y, J. Supercrit. Fluids, 84, 36 (2013)
Kornetani N, Hirata S, Chikada M, J. Supercrit. Fluids, 120, 443 (2017)
Ashraf A, Dastgheib SA, Mensing G, Shannon MA, J. Supercrit. Fluids, 76, 32 (2013)
Matsumura Y, Xu X, MJA, Carbon, 35, 819 (1997)
Salvador F, Martin-Sanchez N, Sanchez-Montero MJ, Montero J, Izquierdo C, J. Supercrit. Fluids, 74, 1 (2013)
Beaucage G, Kammler HK, Pratsinis SE, J. Appl. Crystallogr., 37, 523 (2004)
Li T, Cheng J, Huang R, Yang WJ, Zhou JH, Cen KF, Int. J. Hydrog. Energy, 41(47), 21883 (2016)
Serrano DP, Calleja G, Botas JA, Gutierrez FJ, Sep. Purif. Technol., 54(1), 1 (2007)
Liu Y, Zhang WP, Xie SJ, Xu L, Han XW, Bao XH, J. Phys. Chem. B, 112(4), 1226 (2008)
Abda MB, Schaf O, Ziarelli F, Pizzala H, Denoyel R, Viel S, Zerega Y, Microporous Mesoporous Mater., 234, 200 (2016)
Kumar S, Sinha AK, Hegde SG, Sivasanker S, J. Mol. Catal. A-Chem., 154(1-2), 115 (2000)
Jamil AK, Muraza O, Osuga R, Shafei EN, Choi KH, Yamani ZH, Somali A, Yokoi T, J. Phys. Chem. C, 120, 22918 (2016)
Lutz W, Kurzhals R, Sauerbeck S, Toufar H, Buhl JC, Gesing T, Altenburg W, Jager C, Microporous Mesoporous Mater., 132, 31 (2010)
Ding LH, Zheng Y, Hong Y, Ring Z, Microporous Mesoporous Mater., 101, 432 (2007)
Ravenelle RM, Schuβler F, Amico AD, Danilina N, Bokhoven JAV, Lercher JA, Jones CW, Sicecers C, J. Phys. Chem. C, 114, 19582 (2010)
Wang J, Groen JC, Yue WB, Zhou WZ, Coppens MO, J. Mater. Chem., 18, 468 (2008)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Puziy AM, Poddubnaya OI, Alonso AM, Muniz AC, Garcia FS, Tascon JMD, Carbon, 45, 1941 (2007)
Bhatta LKG, Subramanyam S, Chengala MD, Bhatta UM, Venkatesh K, Ind. Eng. Chem. Res., 54(43), 10876 (2015)
Aguado J, Serrano DP, Escola JM, Peral A, J. Anal. Appl. Pyrolysis, 85, 352 (2009)
Serrano DP, Aguado J, Rodriguez JM, Peral A, J. Anal. Appl. Pyrolysis, 79, 456 (2007)
Dumitriu E, Hulea V, Fechete I, Auroux A, Lacaze JF, Guimon C, Microporous Mesoporous Mater., 43, 341 (2001)
Lonyi F, Valyon J, Thermochim. Acta, 373(1), 53 (2001)
Lonyi F, Valyon J, Microporous Mesoporous Mater., 47, 293 (2001)
Frusteri F, Bonura G, Cannilla C, Ferrante GD, Aloise A, Catizzone E, Migliori M, Giordano G, Appl. Catal. B: Environ., 176, 522 (2015)
Ali MA, Brisdon B, Thomas WJ, Appl. Catal. A: Gen., 252(1), 149 (2003)
Wang P, Shen BJ, Gao JS, Catal. Today, 125(3-4), 155 (2007)
Moises MP, Almeida PPD, Silva CTPD, Rinaldi AW, et al., RSC Adv., 4, 48576 (2014)
Murthy KVVSBSR, Kulkarni SJ, Chandrakala M, Mohan KVVK, Pal P, Rao TSSRP, J. Porous Mat., 17, 185 (2010)
Huybrechts DRC, Buskens PL, Jacobs PA, J. Mol. Catal., 71, 129 (1992)
Lin KF, Sun ZH, Lin S, Jiang DZ, Xiao FS, Microporous Mesoporous Mater., 72, 193 (2004)
Datka J, Kolidziejski W, Klinowski J, Sulikowski B, Catal. Lett., 19, 159 (1993)
Hannus I, Konya Z, Nagy JB, Lentz P, Kiricsi I, Appl. Catal. B: Environ., 17(1-2), 157 (1998)
Lutz W, Gessner W, Bertram R, Pitsch I, Fricke R, Micropor. Mater., 12, 131 (1997)
Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T, Green Chem., 8, 634 (2006)
Adschiri T, Lee YW, Goto M, Takami S, Green Chem., 13, 1380 (2011)
Aimable A, Muhr H, Gentric C, Bernard F, Le Cras F, Aymes D, Powder Technol., 190(1-2), 99 (2009)
Lee JW, Lee JH, Viet TT, Lee JY, Kim JS, Lee CH, Electrochim. Acta, 55, 3051 (2010)
Rangappa D, Naka T, Ohara S, Adschiri T, Cryst. Growth Des., 10, 11 (2010)
Li H, Arita T, Takami S, Adschiri T, Prog. Cryst. Growth Ch., 57, 117 (2011)
Hosseinpour M, Amiri H, Ahmadi SJ, Mousavian MA, J. Supercrit. Fluids, 107, 479 (2016)
Ziegler KJ, Doty RC, Johnston KP, Korgel BA, J. Am. Ceram. Soc., 123, 7797 (2001)
Otsu J, Oshima Y, J. Supercrit. Fluids, 33(1), 61 (2005)
Sawai O, Oshima Y, J. Supercrit. Fluids, 47(2), 240 (2008)
Sawai O, Oshima Y, J. Mater. Sci., 43(7), 2293 (2008)
Zhao D, Han E, Wu X, Guan H, Mater. Lett., 60, 3544 (2006)
Xu CB, Teja AS, J. Supercrit. Fluids, 39(1), 135 (2006)
Qiu B, Han LN, Wang JC, Chang LP, Bao WR, Energy Fuels, 25, 591 (2011)
Wang JC, Qiu BA, Han LN, Feng G, Hu YF, Chang LP, Bao WR, J. Hazard. Mater., 213, 184 (2012)
Lin KS, Wang HP, Yang YW, Chemosphere, 39, 1385 (1999)
Lin KS, Wang HP, Langmuir, 16(6), 2627 (2000)
Lin KS, Wang HP, Appl. Catal. B: Environ., 22(4), 261 (1999)
Mo N, Tandar W, Savage PE, J. Supercrit. Fluids, 102, 73 (2015)
Duan PG, Xu YP, Wang F, Wang B, Yan WH, Biochem. Eng. J., 116, 105 (2016)
Tomita K, Koda S, Oshima Y, Ind. Eng. Chem. Res., 41(14), 3341 (2002)
Lu YJ, Zhu YM, Li S, Zhang XM, Guo LJ, Biomass Bioenerg., 67, 125 (2014)
Karakus Y, Aynaci F, Kipcak E, Akgun M, Int. J. Hydrog. Energy, 38(18), 7298 (2013)
Akizuki M, Oshima Y, J. Supercrit. Fluids, 84, 36 (2013)
Kornetani N, Hirata S, Chikada M, J. Supercrit. Fluids, 120, 443 (2017)
Ashraf A, Dastgheib SA, Mensing G, Shannon MA, J. Supercrit. Fluids, 76, 32 (2013)
Matsumura Y, Xu X, MJA, Carbon, 35, 819 (1997)
Salvador F, Martin-Sanchez N, Sanchez-Montero MJ, Montero J, Izquierdo C, J. Supercrit. Fluids, 74, 1 (2013)
Beaucage G, Kammler HK, Pratsinis SE, J. Appl. Crystallogr., 37, 523 (2004)
Li T, Cheng J, Huang R, Yang WJ, Zhou JH, Cen KF, Int. J. Hydrog. Energy, 41(47), 21883 (2016)
Serrano DP, Calleja G, Botas JA, Gutierrez FJ, Sep. Purif. Technol., 54(1), 1 (2007)
Liu Y, Zhang WP, Xie SJ, Xu L, Han XW, Bao XH, J. Phys. Chem. B, 112(4), 1226 (2008)
Abda MB, Schaf O, Ziarelli F, Pizzala H, Denoyel R, Viel S, Zerega Y, Microporous Mesoporous Mater., 234, 200 (2016)
Kumar S, Sinha AK, Hegde SG, Sivasanker S, J. Mol. Catal. A-Chem., 154(1-2), 115 (2000)
Jamil AK, Muraza O, Osuga R, Shafei EN, Choi KH, Yamani ZH, Somali A, Yokoi T, J. Phys. Chem. C, 120, 22918 (2016)
Lutz W, Kurzhals R, Sauerbeck S, Toufar H, Buhl JC, Gesing T, Altenburg W, Jager C, Microporous Mesoporous Mater., 132, 31 (2010)
Ding LH, Zheng Y, Hong Y, Ring Z, Microporous Mesoporous Mater., 101, 432 (2007)
Ravenelle RM, Schuβler F, Amico AD, Danilina N, Bokhoven JAV, Lercher JA, Jones CW, Sicecers C, J. Phys. Chem. C, 114, 19582 (2010)
Wang J, Groen JC, Yue WB, Zhou WZ, Coppens MO, J. Mater. Chem., 18, 468 (2008)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Puziy AM, Poddubnaya OI, Alonso AM, Muniz AC, Garcia FS, Tascon JMD, Carbon, 45, 1941 (2007)
Bhatta LKG, Subramanyam S, Chengala MD, Bhatta UM, Venkatesh K, Ind. Eng. Chem. Res., 54(43), 10876 (2015)
Aguado J, Serrano DP, Escola JM, Peral A, J. Anal. Appl. Pyrolysis, 85, 352 (2009)
Serrano DP, Aguado J, Rodriguez JM, Peral A, J. Anal. Appl. Pyrolysis, 79, 456 (2007)
Dumitriu E, Hulea V, Fechete I, Auroux A, Lacaze JF, Guimon C, Microporous Mesoporous Mater., 43, 341 (2001)
Lonyi F, Valyon J, Thermochim. Acta, 373(1), 53 (2001)
Lonyi F, Valyon J, Microporous Mesoporous Mater., 47, 293 (2001)
Frusteri F, Bonura G, Cannilla C, Ferrante GD, Aloise A, Catizzone E, Migliori M, Giordano G, Appl. Catal. B: Environ., 176, 522 (2015)
Ali MA, Brisdon B, Thomas WJ, Appl. Catal. A: Gen., 252(1), 149 (2003)
Wang P, Shen BJ, Gao JS, Catal. Today, 125(3-4), 155 (2007)
Moises MP, Almeida PPD, Silva CTPD, Rinaldi AW, et al., RSC Adv., 4, 48576 (2014)
Murthy KVVSBSR, Kulkarni SJ, Chandrakala M, Mohan KVVK, Pal P, Rao TSSRP, J. Porous Mat., 17, 185 (2010)
Huybrechts DRC, Buskens PL, Jacobs PA, J. Mol. Catal., 71, 129 (1992)
Lin KF, Sun ZH, Lin S, Jiang DZ, Xiao FS, Microporous Mesoporous Mater., 72, 193 (2004)
Datka J, Kolidziejski W, Klinowski J, Sulikowski B, Catal. Lett., 19, 159 (1993)
Hannus I, Konya Z, Nagy JB, Lentz P, Kiricsi I, Appl. Catal. B: Environ., 17(1-2), 157 (1998)
Lutz W, Gessner W, Bertram R, Pitsch I, Fricke R, Micropor. Mater., 12, 131 (1997)