ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 13, 2018
Accepted September 29, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Superior dye degradation using SnO2-ZnO hybrid heterostructure catalysts

School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052, Australia 1Department of Biochemistry, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia 2Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
Korean Journal of Chemical Engineering, January 2019, 36(1), 56-62(7), 10.1007/s11814-018-0159-9
downloadDownload PDF

Abstract

We investigated the efficiency of oxide based hierarchical heterostructure as adsorbent for the treatment of organic dyes, Methyl orange (MO) and Methylene Blue (MB), containing solution. Nanocrystals such as ZnO nanorods (at various temperatures of 30, 60 and 75 oC) and SnO2 nanoparticles were synthesized by electrodeposition method and hydrothermal approaches, respectively. SnO2-ZnO heterostructures were formed by spin coating SnO2 nanoparticles on ZnO nanorods matrix to form a heterostructured film. The surface morphologies and structural characterization of as-prepared heterostructures were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. While, absorption spectra of all samples were examined by UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of as-prepared samples for organic dyes degradation were tested under UV light as model reaction. The SnO2-ZnO heterostructured photocatalyst showed superior activities than individual ZnO and SnO2 nanocrystals. This heightened behavior was attributed to its better charge separation capability and the slow charge recombination originating due to difference in energy values of conduction band edges of SnO2 and ZnO. The SnO2-ZnO heterostructure demonstrated better stability and recyclability up to five times, which is highly desirable for potential industrial applications including dye degradation and wastewater treatment systems.

References

Diaz-Cruz MS, Barcelo D, Chemosphere, 72, 333 (2008)
Akpan UG, Hameed BH, J. Hazard. Mater., 170(2-3), 520 (2009)
Zhao H, Zhang G, Chong S, Zhang N, Liu Y, Ultrason. Sonochem., 27, 474 (2015)
Kumar R, Kumar G, Akhtar MS, Umar A, J. Alloy. Compd., 629, 167 (2015)
Bokhale NB, Bomble SD, Dalbhanjan RR, Mahale DD, Hinge SP, Banerjee BS, Mohod AV, Gogate PR, Ultrason. Sonochem., 21, 1797 (2014)
Rastogi K, Sahu JN, Meikap BC, Biswas MN, J. Hazard. Mater., 158(2-3), 531 (2008)
Gillman PK, J. Psychopharmacol., 25, 429 (2011)
Sponza DT, Isik M, Enzyme Microb. Technol., 31(1-2), 102 (2002)
Ozer D, Dursun G, Ozer A, J. Hazard. Mater., 144(1-2), 171 (2007)
El Sikaily A, Khaled A, El Nemr A, Abdelwahab O, Chem. Ecol., 22, 149 (2006)
Moradi M, Ghanbari F, Manshouri M, Angali KA, Korean J. Chem. Eng., 33, 539 (016)
Ngah WSW, Teong LC, Hanafiah MAKM, Carbohydr. Polym., 83, 1446 (2011)
Singh K, Arora S, Crit. Rev. Environ. Sci. Technol., 41, 807 (2011)
Warang T, Patel N, Fernandes R, Bazzanella N, Miotello A, Appl. Catal. B: Environ., 132-133, 204 (2013)
Hung H, Ling FH, Haffmann MR, Environ. Sci. Technol., 34, 1758 (2000)
Hassani A, Soltani RDC, Kiransan M, Karaca S, Karaca C, Khataee A, Korean J. Chem. Eng., 33(1), 178 (2016)
Hassani A, Kiransan M, Darvishi Cheshmeh Soltani R, Khataee A, Karaca S, Turk. J. Chem., 39(4), 734 (2015)
Modirshahla N, Behnajady MA, Rahbarfam R, Hassani A, Clean, 40, 298 (2012)
Hassani A, Eghbali P, Ekicibil A, Metin O, J. Magn. Magn. Mater., 456, 400 (2018)
Hasssani A, Celikdag G, Eghbali P, Sevim M, Karaca S, Metin O, Ultrason. Sonochem., 40, 841 (2018)
Younis A, Shirsath S, Shabbir B, Li S, Nanoscale, 10, 18576 (2018)
Devi LG, Kavitha R, Appl. Catal. B: Environ., 140-141, 559 (2013)
Perez DYRC, Delgado GT, Angel OZ, J. Photochem. Photobiol., 235, 49 (2012)
Uchiyama H, Nagao R, Kozuka H, J. Alloy. Compd., 554, 122 (2013)
Hamrouni A, Lachheb H, Houas A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 178, 1371 (2013)
Tian W, Zhang C, Zhai TY, Li SL, Wang X, Liu JW, Jie X, Liu DQ, Liao MY, Koide Y, Golberg D, Bando Y, Adv. Mater., 26(19), 3088 (2014)
Zhang Z, Shao C, Li X, Zhang L, Hongmei X, Changhua W, Liu Y, J. Phys. Chem. C, 114, 7920 (2010)
Zhang C, Tiabn W, Xu Z, Wang X, Liu J, Li SL, Tang DM, Liu D, Liao M, Bando Y, Golberg D, Nanoscale., 6, 8084 (2014)
Changlin YU, Yang K, Qing SHU, Jimmy CYJ, Fangfang CAO, Xin LI, Chin. J. Catal, 32, 555 (2011)
Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM, J. Phys. Chem. B, 105(5), 1026 (2001)
Chen SF, Zhao W, Liu W, Zhang SJ, Appl. Surf. Sci., 255(5), 2478 (2008)
Mathur S, Barth S, Small, 3, 2070 (2007)
Ostermann R, Li D, Yin Y, McCann JT, Xia Y, Nano Lett., 6, 1297 (2006)
Modirshahla N, Hassani A, Behnajady MA, Rahbarfam R, Desalination, 271(1-3), 187 (2011)
Lee JS, Kwon OS, Jang J, J. Mater. Chem., 22, 14565 (2012)
Zhang L, Yin L, Wang C, Lun N, Qi Y, CS Appl. Mater. Interfaces, 2, 1769 (2010)
Cheng C, Liu B, Yang H, Zhou W, Sun L, Chen R, Yu SF, Zhang J, Gong H, Sun H, Fan HJ, ACS Nano, 3, 3069 (2009)
Wu H, Kong DS, Ruan ZC, Hsu PC, Wang S, Yu ZF, Carney TJ, Hu LB, Fan SH, Cui Y, Nat. Nanotechnol., 8(6), 421 (2013)
Saeed K, Ali G, Khan I, Khan H, J. Chem. Eng. Chem. Res., 2, 671 (2015)
Valizadeh S, Rasoulifard MH, Dorraji MSS, Korean J. Chem. Eng., 33(2), 481 (2016)
Jing S, Younis A, Chu D, Li S, SAIMS Mater. Sci., 2, 28 (2015)
Xu F, Lu YN, Xia LL, Xie Y, Dai M, Liu YF, Mater. Res. Bull., 44(8), 1700 (2009)
Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y, J. Phys. Chem. C., 114, 7920 (2010)
Ahn HJ, Choi HC, Park KW, Kim SB, Sung YE, J. Phys. Chem. B, 108(28), 9815 (2004)
Islam MN, Ghosh TB, Chopra KL, Acharya HN, Thin Solid Films, 280(1-2), 20 (1996)
Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prarie, MN (1979).
Kim JN, Shin KS, Kim DH, Park BO, Kim NK, Cho SH, Appl. Surf. Sci., 206(1-4), 119 (2003)
Studenikin SA, Golego N, Cocivera M, J. Appl. Phys., 87, 2413 (2000)
Henrich VE, Cox PA, The Surface Science of Metal Oxides, Cambridge Univ. Press, Cambridge, UK (1994).
Marsalek R, APCBEE Procedia., 9, 13 (2014)
Tayade RJ, Natarajan TS, Bajaj HC, Ind. Eng. Chem. Res., 48(23), 10262 (2009)
Younis A, Chu D, Kaneti YV, Li S, Nanoscale, 8, 378 (2016)
Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y, Ener. Environ. Sci., 5, 6321 (2012)
Cheng H, Wang J, Zhao Y, Han X, RSC Adv., 4, 47031 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로