ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 31, 2018
Accepted August 28, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sensitivity analysis of key factors in controlling absorption and desorption of oxygen to oxygen carriers

School of Metallurgy, Northeastern University, No 11, Lane 3, Wenhua Road, Heping District, Shenyang 110819, Liaoning, P. R. China
Korean Journal of Chemical Engineering, January 2019, 36(1), 84-91(8), 10.1007/s11814-018-0147-0
downloadDownload PDF

Abstract

Chemical looping air separation gives an oxygen resource for the oxy-fuel combustion system. To investigate the sensitivity of operation parameters and optimal operation parameters, with the consideration of the reactor temperature, we used the oxygen concentration, and reaction gas flow, an orthogonal experiment and multi-objective comprehensive evaluation method to analyze the results obtained by fixed-bed apparatus with the YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.5Dy0.5BaCo4O7+δ, and Y0.2Ti0.05Dy0.75BaCo4O7+δ oxygen carriers. The results showed that the effects of operating conditions on oxygen absorption/desorption properties varieds in the order: oxygen concentration>gas flow rate>absorption temperature=desorption temperature. Analysis of max-min difference showed that the optimum operating conditions such as absorption temperature, 350 °C, desorption temperature, 430 °C, gas flow rate, 200 ml/min, and oxygen concentration, 21% were confirmed.

References

Yang Q, Lin JYS, Sep. Purif. Technol., 49(1), 27 (2006)
Moghtaderi B, Energy Fuels, 24(1), 190 (2010)
Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163 (2014)
Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28(1), 173 (2014)
Chuang SY, Dennis JS, Hayhurst AN, Scott SA, Combust. Flame, 154(1-2), 109 (2008)
Wang K, Yu QB, Qin Q, Energy Fuels, 27(9), 5466 (2013)
Wang K, Yu QB, Qin Q, Li JZ, Wang ZM, J. Inorg. Mater., 29(3), 301 (2014)
Ishida M, Yamamoto M, Ohba T, Energy Conv. Manag., 43(9-12), 1469 (2002)
Mattisson T, Lyngfelt A, Leion H, Int. J. Greenhouse Gas Control., 3(1), 11 (2009)
Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493 (2011)
Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Fuel, 90(3), 941 (2011)
Azimi G, Leion H, Mattisson T, Lyngfelt A, Energy Procedia, 4(1), 370 (2011)
Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z, Korean J. Chem. Eng., 34(6), 1651 (2017)
Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936 (2017)
Cheng Z, Qin L, Fan JA, Fan LS , Eng., DOI:https://doi.org/10.1016/j.eng.2018.05.002.
Hossain MM, Arab. J. Sci. Eng., 1 (2017), DOI:10.1007/s13369-017-2706-9.
Zhu J, Wang W, Lian SJ, Hua XN, Xia Z, J. Mater. Cycles Waste, 19(1), 453 (2017)
Shen WQ, Diss MA, Huazhong University of Science and Technology (2012).
Zhang T, Li ZS, Cai S, J. Chem. Eng., 26(3), 845 (2009)
Valldor M, Andersson M, Solid State Sci., 4(7), 923 (2002)
Karppinen M, Yanauchi H, Otani S, Chem. Mater., 18(2), 490 (2006)
Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 148(1), 196 (2008)
Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M, Catal. Today, 74(3-4), 225 (2007)
Kaspar J, Fornasiero P, J. Solid State Chem., 171(1-2), 19 (2003)
Kadota S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20(20), 6378 (2008)
Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385 (2008)
Zhang SM, Dissertation MA, ZhengZhou University (2011).
Guo LJ, Dissertation MA, ZhengZhou University (2005).
Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg. Mater., 49(6), 626 (2013)
Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599 (2013)
Valldor M, Solid State Sci., 7(10), 1163 (2005)
Hou L, Yu Q, Wang T, Wang K, Qin Q, Qi Z, Korean J. Chem. Eng., 35(3), 626 (2018)
Qi AD, Wang SD, Fu GZ, Ni CJ, Wu DY, Appl. Catal. A: Gen., 281(1-2), 233 (2005)
Shi BB, Jiang ZD, Nat. Gas Chem. Ind., 38(3), 11 (2013)
Wang K,Diss MA, Shanghai Jiaotong University (2009).
Cimino S, Lisi L, Pirone R, Russo G, Turco M, Catal. Today, 59(1-2), 19 (2000)
Wang K, Yu QB, Qin Q, Zuo ZL, Wu TW, Chem. Eng. J., 287, 292 (2016)
Liu Q, Shi JJ, Zheng SD, Tao MN, He Y, Shi Y, Ind. Eng. Chem. Res., 53(29), 11677 (2014)
Wang MT, Chin. Soft Sci., 08, 100 (1999)
Ni HL, Wu ZY, Muhammad I, Lu ZY, Li JC, Bra J. Pharmacogn., 28(2), 151 (2018)
Zuo YJ, Diss MA, Guangdong University Technology (2012).
Kong F, Bi Y, Yan C, Zeng Z, J. Med. Plants Res., 7(12), 720 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로