ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 19, 2018
Accepted August 8, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Removal of crystal violet dye by an efficient and low cost adsorbent: Modeling, kinetic, equilibrium and thermodynamic studies

Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran 1Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
Korean Journal of Chemical Engineering, October 2019, 36(10), 1575-1586(12), 10.1007/s11814-019-0356-1
downloadDownload PDF

Abstract

Natural zeolite as a low cost clay was tested for removal of crystal violet known as a noxious dye. Five characterization techniques were used for this study. Optimizing and modeling of adsorption were performed at minimum time by an applicable technique named as response surface methodology (RSM). Three effective variables (pH, temperature (T) and adsorbate-to-adsorbent ratio (a/A)) were monitored to obtain the dye removal efficiencies. The maximum removal of dye was obtained at pH=10, T=25 °C and a/A=0.1 g/g. For natural zeolite, the Fractal-Langmuir model was selected as an appropriate model for kinetic studies and the Freundlich isotherm was the best isotherm for equilibrium studies. Thermodynamic investigations showed that the adsorption of dye on natural zeolite is endothermic process and a spontaneous reaction. The maximum dye adsorption capacity of natural zeolite and Merck activated carbon on the surface of each adsorbent was obtained at 177.75 and 84.11mg/g, respectively. In comparison with the maximum adsorption capacity of activated carbon obtained from Merck Company, we can conclude that natural zeolite possesses a higher adsorption capacity. These results reveal that, natural zeolite is an excellent and affordable adsorbent for removal of crystal violet from wastewater as compared to activated carbon.

References

Hao OJ, Kim H, Chiang PC, Environ. Sci. Technol., 30, 449 (2000)
Li SF, Bioresour. Technol., 101(7), 2197 (2010)
Senthilkumaar S, Kalaamani P, Subburaam CV, J. Hazard. Mater., 136(3), 800 (2006)
He H, Yang SG, Yu K, Ju YM, Sun C, Wang LH, J. Hazard. Mater., 173(1-3), 393 (2010)
Guz L, Curutchet G, Sanchez RMT, Candal R, J. Environ. Chem. Eng., 2, 2344 (2014)
Bashiri H, Rafiee M, J. Saudi Chem. Soc., 20, 474 (2016)
Zhu R, Chen Q, Liu H, Ge F, Zhu L, Zhu J, He H, Appl. Clay Sci., 88, 33 (2014)
Eris S, Bashiri H, Prog. React. Kinet. Mechanism, 41, 109 (2016)
Gupta SVK, Environ. Manage., 90, 2313 (2009)
Banerjee K, Cheremisinoff PN, Cheng SL, Water Res., 31, 249 (1997)
Hor KY, Chee JMC, Chong MN, Jin B, Saint C, Poh PE, Aryal R, J. Clean Prod., 118, 197 (2016)
Sismanoglu T, Kismir Y, Karakus S, J. Hazard. Mater., 184(1-3), 164 (2010)
Humelnicu I, Baiceanu A, Ignat ME, Dulman V, Process Saf. Environ. Protect., 105, 274 (2017)
Qiu MQ, Qian C, Xu J, Wu JM, Wang GX, Desalination, 243(1-3), 286 (2009)
Townsend RP, Studies in Surface Science and Catalysis, Elsevier, 359 (1991).
Pereira PM, Ferreira BF, Oliveira NP, Nassar EJ, Ciuffi KJ, Vicente MA, Trujillano R, Rives V, Gil A, Korili S, De Faria EH, Appl. Sci., 8, 608 (2018)
Awala H, Leite E, Saint-Marcel L, Clet G, Retoux R, Naydenova I, Mintova S, New J. Chem., 40, 4277 (2016)
Campbell L, Chimedtsogzol A, Dyer A, Mineralogical Magazine, 70, 361 (2006)
Campbell LS, Charnock J, Dyer A, Hillier S, Chenery S, Stoppa F, Henderson CMB, Walcott R, Rumsey M, Mineralogical Magazine, 80, 781 (2018)
Basar CA, J. Hazard. Mater., 135(1-3), 232 (2006)
Pelaez-Cid AA, Herrera-Gonzalez AM, Salazar-Villanueva M, Bautista-Hernandez A, J. Environ. Manage., 181, 269 (2016)
Azizian S, Haerifar M, Bashiri H, Chem. Eng. J., 146(1), 36 (2009)
Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M, J. Taiwan Inst. Chem. Engineers, 53, 112 (2015)
Belaid KD, Kacha S, Kameche M, Derriche Z, J. Environ. Chem. Eng., 1, 496 (2013)
Giannakoudakis DA, Kyzas GZ, Avranas A, Lazaridis NK, J. Mol. Liq., 213, 381 (2016)
Yavuz O, Aydin AH, Polish J. Environ. Studies, 15, 155 (2006)
Mousavi SM, Salari D, Niaei A, Panahi PN, Shafiei S, Environ. Technol., 35, 581 (2014)
Mousavi SM, Panahi PN, J. Taiwan Inst. Chem. Eng., 69, 68 (2016)
Karimifard S, Moghaddam MRA, Process Saf. Environ. Protect., 99, 20 (2016)
Satapathy MK, Das P, J. Environ. Chem. Eng., 2, 708 (2014)
Asfaram A, Ghaedi M, Goudarzi A, Rajabi M, Dalton Trans., 44, 14707 (2015)
Hernandez-Montoya V, Perez-Cruz MA, Mendoza-Castillo DI, Moreno-Virgen MR, Bonilla-Petriciolet A, J. Environ. Manage., 116, 213 (2013)
Flores-Lopez NA, Castro-Rosas J, Ramirez-Bon R, Mendoza-Cordova A, Larios-Rodriguez E, Flores-Acosta M, J. Mol. Struct., 1028, 110 (2012)
Dila EA, Ghaedi M, Asfaram A, Ultrason. Sonochem., 34, 792 (2017)
Xue YJ, Hou HB, Zhu SJ, Chem. Eng. J., 147(2-3), 272 (2009)
Danesh N, Hosseini M, Ghorbani M, Marjani A, Synth. Met., 220, 508 (2016)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich H, Zeitschrift fur Physikalische Chemie, 57U, 385 (1907)
Temkin MJ, Pyzhev V, Acta Physicochimica U.R.S.S., 12, 327 (1940)
Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S, J. Hazard. Mater., 162(2-3), 616 (2009)
Alberti G, Amendola V, Pesavento M, Biesuz R, Coord. Chem. Rev., 256, 28 (2012)
Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
Bashiri H, Eris S, Chem. Eng. Commun., 203(5), 628 (2016)
Singh AMKP, Sinha S, Ojha P, J. Hazard. Mater., 150, 626 (2008)
Bertolini TCR, Izidoro JC, Magdalena CP, Fungaro DA, Orbital: Electron. J. Chem., 5, 179 (2013)
Dila EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkai MK, J. Taiwan Inst. Chem. Eng., 59, 210 (2015)
Amodu OS, Ojumu TV, Ntwampe SK, Ayanda OS, J. Encapsulation Adsorpt. Sci., 5, 191 (2015)
Senthilkumaar S, Kalaamani P, Subburaam CV, J. Hazard. Mater., 136(3), 800 (2006)
Nandi BK, Goswami A, Das AK, Mondal B, Purkait MK, Sep. Sci. Technol., 43(6), 1382 (2008)
Yang H, Zhou D, Chang Z, Zhang L, Desalin. Water Treat., 52, 6113 (2014)
Anirudhan TS, Suchithra PS, Radhakrishnan PG, Appl. Clay Sci., 43, 336 (2009)
Chen ZX, Wang T, Jin XY, Chen ZL, Megharaj M, Naidu R, J. Colloid Interface Sci., 398, 59 (2013)
Hamidzadeh S, Torabbeigi M, Shahtaheri SJ, J. Environ. Health Sci. Eng., 13, 8 (2015)
Rai P, Gautam RK, Banerjee S, Rawat V, Chattopadhyaya MC, J. Environ. Chem. Eng., 3, 2281 (2015)
Simonin JP, Chem. Eng. J., 300, 254 (2016)
Lagergren S, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1 (1898).
Kang YL, Toh SKS, Monash P, Ibrahim S, Saravanan P, Asia-Pacific J. Chem. Eng., 8, 811 (2013)
Coruh S, Geyikci F, Ergun ON, Environ. Technol., 32, 1183 (2011)
Yang XY, Al-Duri B, J. Colloid Interface Sci., 287(1), 25 (2005)
Azizian S, Bashiri H, Langmuir, 24(20), 11669 (2008)
Azizian S, J. Colloid Interface Sci., 276(1), 47 (2004)
Bashiri H, Javanmardi AH, Chem. Phys. Lett., 671, 1 (2017)
Bashiri H, Chem. Phys. Lett., 575, 101 (2013)
Marczewski AW, Langmuir, 26(19), 15229 (2010)
Haerifar M, Azizian S, J. Phys. Chem. C, 116, 13111 (2012)
Tran HN, You SJ, Chao HP, J. Environ. Chem. Eng., 4, 2671 (2016)
Tagami L, Santos O, Sousa-Aguiar EF, Arroyo PA, Barros M, Acta Scientiarum, 23, 1351 (2001)
Ishaq M, Javed F, Amad I, Ullah H, J. Chem. Chem. Eng., 35, 97 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로