ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 30, 2018
Accepted July 23, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction

Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Korean Journal of Chemical Engineering, October 2019, 36(10), 1604-1618(15), 10.1007/s11814-019-0345-4
downloadDownload PDF

Abstract

Hydrothermal liquefaction (HTL) of seven algae was conducted at both 280 and 350 °C with a reaction time of 30min and a mass ratio of 1/4 of algae to water to evaluate the utilization potential of bio-oil production and nutrient recycling in the aqueous by-product and solid residue particles. Chlorella and Nannochloropsis sp. exhibited the highest bio-oil yields at 280 °C (36.5% from Nannochloropsis sp.) and 350 °C (38.1% from Chlorella). Additionally, temperature had little effect on the energy recovery from Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena. The carbohydrates and lipids in the algae were primarily related to monoaromatic and single-ring heterocyclic compound generation in bio-oil. In addition, carbohydrates and proteins significantly affected oxygenated compound production. The sizable total carbon, ammonia nitrogen, total nitrogen and phosphate contents in the aqueous byproducts showed great potential as nutrient sources for algal cultivation and the production of value-added chemicals through recycling. Higher temperatures increased the percentage of ammonia nitrogen in the total nitrogen and reduced the phosphate concentration in the aqueous by-product. According to potential evaluation factors, Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena totally showed higher potential in terms of bio-oil production and aqueous nutrient recycling than Dunaliella salina and Enteromorpha prolifera, in which Nannochloropsis sp. exhibited the greatest utilization potential at investigated conditions.

References

Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B, Bioenerg Res., 1(1), 20 (2008)
Miao X, Wu Q, Yang C, J. Anal. Appl. Pyrolysis, 71(2), 855 (2004)
Xu H, Miao X, Wu Q, J. Biotechnol., 126(4), 499 (2006)
Savage PE, Science, 338(6110), 1039 (2012)
Barreiro DL, Prins W, Ronsse F, Brilman W, Biomass Bioenerg., 53, 113 (2013)
Tian C, Li B, Liu Z, Zhang Y, Lu H, Renew. Sust. Energ. Rev., 38, 933 (2014)
Akiya N, Savage PE, Chem. Rev., 102(8), 272 (2002)
Peterson AA, Vogel F, Lachance RP, Froling M, Antal JMJ, Tester JW, Energy Environ. Sci., 1(1), 32 (2008)
Duan P, Savage PE, Ind. Eng. Chem. Res., 50(1), 52 (2010)
Cao L, Luo G, Zhang S, Chen J, RSC Adv., 6(18), 15260 (2016)
Zhou D, Zhang L, Zhang S, Fu H, Chen J, Energy Fuels, 24(7), 4054 (2010)
Song WH, Wang SZ, Guo Y, Xu DH, Int. J. Hydrog. Energy, 42(31), 20361 (2017)
Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY, Fuel, 73(12), 1855 (1994)
Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE, Biomass Bioenergy, 46, 317 (2012)
Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221 (2011)
Brown TM, Duan PG, Savage PE, Energy Fuels, 24(6), 3639 (2010)
Miao C, Chakraborty M, Chen SL, Bioresour. Technol., 110, 617 (2012)
Valdez PJ, Savage PE, Algal Res., 2(4), 416 (2013)
Toor SS, Reddy H, Deng SG, Hoffmann J, Spangsmark D, Madsen LB, Holm-Nielsen JB, Rosendahl LA, Bioresour. Technol., 131, 413 (2013)
Guo Y, Song WH, Lu JM, Ma OR, Xu DH, Wang SZ, Algal Res., 11, 242 (2015)
Zhang B, Lin QS, Zhang QH, Wu KJ, Pu WH, Yang MD, Wu YL, RSC Adv., 7(15), 8944 (2017)
Yang C, Jia LS, Chen CP, Liu GF, Fang WP, Bioresour. Technol., 102(6), 4580 (2011)
Yang WC, Li XG, Liu SS, Feng LJ, Energy Conv. Manag., 87, 938 (2014)
Barreiro DL, Samori C, Terranella G, Hornung U, Kruse A, Prins W, Bioresour. Technol., 174, 256 (2014)
Zou SP, Wu YL, Yang MD, Li C, Tong JM, Energy Environ. Sci., 3(8), 1073 (2010)
Lu JW, Liu ZD, Zhang YH, Li BM, Lu Q, Ma YQ, Shen RX, Zhu ZB, J. Clean Prod., 142, 749 (2017)
Hognon C, Delrue F, Texier J, Grateau M, Thiery S, Miller H, Roubaud A, Biomass Bioenergy, 73, 23 (2015)
Eboibi BEO, Lewis DM, Ashman PJ, Chinnasamy S, Bioresour. Technol., 174, 212 (2014)
Jena U, Das KC, Kastner JR, Appl. Energy, 98, 368 (2012)
Abdul R, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Razif H, RSC Adv., 5(88), 71805 (2015)
Leng LJ, Li J, Wen ZY, Zhou WG, Bioresour. Technol., 256, 529 (2018)
Mariluz BV, Ulrike SS, Gael P, Frederic V, Christian L, Algal Res., 8, 76 (2015)
Jena U, Vaidyanathan N, Chinnasamy S, Das KC, Bioresour. Technol., 102(3), 3380 (2011)
Yu G, Zhang Y, Schideman L, Funk T, Wang Z, Energy Environ. Sci., 4(11), 4587 (2011)
Zhu YH, Jones SB, Schmidt AJ, Albrecht KO, Edmundson SJ, Anderson DB, Algal Res., 39, 101467 (2019)
Zhang YH, Schideman L, E2-Energy, http://e2-energy.illinois.edu/ (Accessed March 6th 2011).
Selvaratnam T, Henkanatte-Gedera SM, Muppaneni T, Nirmalakhandan N, Deng S, Lammers PJ, Energy, 104, 16 (2016)
Li Y, Leow S, Fedders AC, Sharma BK, Guest JS, Strathmann TJ, Green Chem., 19(4), 1163 (2017)
Madsen RB, Biller P, Jensen MM, Becker J, Iversen BB, Glasius M, Energy Fuels, 30(12), 10470 (2016)
Cherad R, Onwudili JA, Biller P, Williams PT, Ross AB, Fuel, 166, 24 (2016)
Gai C, Zhang YH, Chen WT, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo CT, Dong YP, Bioresour. Technol., 184, 328 (2015)
Edmundson S, Huesemann M, Kruk R, Lemmon T, Billing J, Schmidt A, Anderson D, Algal Res., 26, 415 (2017)
Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB, Bioresour. Technol., 178, 147 (2015)
Faeth JL, Valdez PJ, Savage PE, Energy Fuels, 27(3), 1391 (2013)
Liu WJ, Tian K, Jiang H, Zhang XS, Ding HS, Yu HQ, Environ. Sci. Technol., 46(14), 7849 (2012)
Stanzione JF, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP, ACS Sustain. Chem. Eng., 1(4), 419 (2013)
Biller P, Ross AB, Bioresour. Technol., 102(1), 215 (2011)
Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876 (2011)
Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295 (2011)
Valdez PJ, Dickinson JG, Savage PE, Energy Fuels, 25(7), 3235 (2011)
Srokol Z, Bouche AG, van Estrik A, Strik RCJ, Maschmeyer T, Peters JA, Carbohydr. Res., 339, 1717 (2004)
Chen WT, Zhang YH, Zhang JX, Yu G, Schideman LC, Zhang P, Minarick M, Bioresour. Technol., 152, 130 (2014)
Qian LL, Wang SZ, Savage PE, Bioresour. Technol., 232, 27 (2017)
Chen WT, Zhang YH, Zhang JX, Schideman L, Yu G, Zhang P, Minarick M, Appl. Energy, 128, 209 (2014)
Williams PT, Onwudili J, Ind. Eng. Chem. Res., 44(23), 8739 (2005)
Nelson DA, Molton PM, Russell JA, Hallen RT, Ind. Eng. Chem. Prod. Res. Dev., 23(3), 471 (1984)
Sinag A, Kruse A, Schwarzkopf V, Ind. Eng. Chem. Res., 42(15), 3516 (2003)
Luijkx GCA, van Rantwijk F, van Bekkum H, Carbohydr. Res., 242, 131 (1993)
Bohutskyi P, Betenbaugh MJ, Bouwer EJ, Bioresour. Technol., 155, 366 (2014)
Sato N, Quitain AT, Kang K, Daimon H, Fujie K, Ind. Eng. Chem. Res., 43(13), 3217 (2004)
Zou SP, Wu YL, Yang MD, Kaleem I, Chun L, Tong JM, Energy, 35(12), 5406 (2010)
Jena U, Das KC, Energy Fuels, 25(11), 5472 (2011)
Barreiro DL, Zamalloa C, Boon N, Vyverman W, Ronsse F, Brilman W, Prins W, Bioresour. Technol., 146, 463 (2013)
Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF, Energy Fuels, 26(1), 658 (2012)
Yang YF, Feng CP, Inamori Y, Maekawa T, Resour. Conserv. Recycl., 43(1), 21 (2004)
Tian CY, Liu ZD, Zhang YH, Li BM, Cao W, Lu HF, Duan N, Zhang L, Zhang TT, Bioresour. Technol., 184, 336 (2015)
Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A, J. Phycol., 33, 969 (1997)
Carvalho JCM, Francisco FR, Almeida KA, Sato S, Converti A, J. Phycol., 40, 589 (2004)
Belkin S, Boussiba S, Plant Cell Physiol., 32(7), 953 (1991)
Gai C, Zhang YH, Chen WT, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo CT, Dong YP, Bioresour. Technol., 184, 328 (2015)
Maddi B, Panisko E, Wietsma T, Lemmon T, Swita M, Albrecht K, Howe D, Biomass Bioenergy, 93, 122 (2016)
Kulaev I, Vagabov V, Kulakovskaya T, J. Biosci. Bioeng., 88(2), 111 (1999)
Shakya R, Adhikari S, Mahadevan R, Shanmugam SR, Nam H, Hassan E, Dempster TA, Bioresour. Technol., 243, 1112 (2017)
Alba LG, Torri C, Samori C, van der Spek J, Fabbri D, Kersten SRA, Brilman DWF, Energy Fuels, 26(1), 642 (2011)
Chronakis IS, J. Agr. Food Chem., 49(2), 888 (2001)
Peterson AA, Lachance RP, Tester JW, Ind. Eng. Chem. Res., 49(5), 2107 (2010)
Wang YY, Wang CH, J. Yantai Univ., 19(2), 125 (2006)
Liu JG, Zhang JP, Yin MY, Meng ZC, Studia Marina Sinica, 48, 55 (2007)
Li XF, Wang CH, Wen SH, Food Ferment Ind., 25(4), 13 (1999)
Lou SL, Wu LG, He CX, Wu QJ, J. Xiamen Univ., 35(6), 955 (1996)
Shan DJ, Gong JH, China Patent, ZL200910091011.4 (2009).
Wang KM, J. Hangzhou Inst. Appl. Eng., 17(3), 167 (2005)
Wu T, Preliminary Study on the Influence of Nutrients on the Growth of Ulva prolifera and its Absorption of Different Nitrogen Species [Master Dissertation]. Qingdao China (2013).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로