ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 21, 2019
Accepted August 5, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches

Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia 1School of Biosciences, Taylor’s University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
Korean Journal of Chemical Engineering, October 2019, 36(10), 1619-1625(7), 10.1007/s11814-019-0348-1
downloadDownload PDF

Abstract

Lignocelluloses complexity has led to poor dissolution efficiency in solvents. This study was conducted to concentrate hemicellulose content in oil palm empty fruit bunches (EFB) using green solvent, choline chloride (ChCl)- based deep eutectic solvent (DES). Results showed that ChCl : formic acid (FA) is the most effective among the DES in concentrating hemicellulose content in treated EFB and exhibits the highest dissolution power of lignin. The toxicity test showed that all the synthesized DES had negligible effect against Escherichia coli and Salmonella typhimurium. Nevertheless, all of them possessed comparable cell proliferation to their individual counterparts, ChCl, glycerol, lactic acid (LA) and FA, which implied that these DES could be used in the intended industries.

References

Rebouillat S, Pla F, J. Biomater. Nanobiotechnol., 7, 167 (2016)
Li GM, Li Y, Chen J, Zhao PP, Li DG, Dong YH, Zhang LP, Electrochim. Acta, 245, 941 (2017)
Zanotti M, Ruan Z, Bustamente M, Liu Y, Liao W, Green Chem., 18, 5059 (2016)
Galliano S, Bella F, Piana G, Giacona G, Viscardi G, Gerbaldi C, Gratzel M, Barolo C, Solar Energy, 163, 251 (2018)
Bella F, Galliano S, Piana G, Giacona G, Viscardi G, Gratzel M, Barolo C, Gerbaldi C, Electrochim. Acta, 302, 31 (2019)
Lee JH, Lee HU, Lee JH, Lee SK, Yoo HY, Park CH, Kim SW, Korean J. Chem. Eng., 36(1), 71 (2019)
Yao X, Yu Q, Xu G, Han Z, Qin Q, Korean J. Chem. Eng., 36(5), 722 (2019)
Buzała KP, Kalinowska H, Przybysz P, Małachowska E, Wood Sci. Technol., 51, 873 (2017)
Bilo F, Pandini S, Sartore L, Depero LE, Gargiulo G, Bonassi A, Federici S, Bontempi E, J. Clean Prod., 200, 357 (2018)
Li Y, Song N, Wang K, Korean J. Chem. Eng., 36(5), 678 (2019)
Mehta V, Patel E, Vaghela K, Marjadi D, Dharaiya N, Production of biopolymer from dairy waste: An approach to alternate synthetic plastic, 6, 1 (2017).
Kushairi A, Loh SK, Azman I, Elina H, Ong-Abdullah M, Zanal BMNI, Razmah G, Shamala S, Ghulam KAP, J. Oil Palm Res., 30, 163 (2018)
Loh SK, Energy Conv. Manag., 141, 285 (2017)
Kumar D, Singh B, Korstad J, Renew. Sust. Energ. Rev., 73, 654 (2017)
Solarte-Toro JC, Chacon-Perez Y, Cardona-Alzate CA, Electron. J. Biotechnol., 33, 52 (2018)
Safari F, Tavasoli A, Ataei A, Choi JK, Int. J. Recycling of Organic Waste in Agriculture, 4, 121 (2015).
Benalcazar EA, Deynoot BG, Noorman H, Osseweijer P, Posada JA, Biofuels, Bioproducts and Biorefining, 11, 861 (2017).
Isikgor FH, Becer CR, Polym. Chem., 6, 4497 (2015)
van den Bergh J, Babich IV, O’Connor P, Moulijn JA, Ind. Eng. Chem. Res., 56, 13423 (2017)
Stickel J, Elander RT, Mcmillan JD, Brunecky R, Bioprocessing of Renewable Resources to Commodity Bioproducts, Bisaria, V. S. & Kondo, A., Eds. Wiley, 77 (2014).
Barakat A, Monlau F, Solhy A, Carrere H, Appl. Energy, 142, 240 (2015)
Lin Z, Liu L, Li R, Shi J, J. Microbial Biochem. Technol., ㄴ12, 1 (2012)
Subhedar PB, Gogate PR, Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, Amsterdam, 127 (2016).
Noparat P, Prasertsan P, Thong SO, Pan X, Energy Procedia, 79, 924 (2015)
Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H, Biotechnology Biofuels, 6, 8 (2013)
Park YC, Kim TH, Kim JS, Biotechnol. Bioprocess Eng., 22, 431 (2017)
Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M, Biochem. Eng. J., 109, 252 (2016)
Li Z, Chen C, Hegg EL, Hodge DB, Biotechnology Biofuels, 6, 119 (2013)
Pielhop T, Amgarten J, von Rohr PR, Studer MH, Biotechnology Biofuels
Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT, Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis, 17, 845 (1995).
Alizadeh H, Teymouri F, Gilbert TI, Dale BE, Appl. Biochem. Biotechnol., 124, 1133 (2005)
Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C, AMB Express, 7, 72 (2017)
Chandel AK, Antunes FAF, Teran-Hilares R, Cota J, Ellila S, Silveira MHL, dos Santos JC, da Silva SS, Advances in Sugarcane Biorefinery, Eds. Elsevier, 97 (2018).
Karimi K, Taherzadeh MJ, Bioresour. Technol., 200, 1008 (2016)
Cherigui EAM, Sentosun K, Bouckenooge P, Vanrompay H, Bals S, Terryn H, Ustarroz J, J. Phys. Chem. C, 121, 9337 (2017)
Karim WO, Abbott AP, Cihangir S, Ryder KS, Transactions of the IMF, 96, 200 (2018).
Jenkin GRT, Al-Bassam AZM, Harris RC, Abbott AP, Smith DJ, Holwell DA, Chapman RJ, Stanley CJ, Miner. Eng., 87, 18 (2016)
Ma C, Sarmad S, Mikkola JP, Ji X, Energy Procedia, 142, 3320 (2017)
Gorke JT, Srienc F, Kazlauskas RJ, Chem. Commun., 1235 (2008)
Guajardo N, Muller CR, Schrebler R, Carlesi C, Habil PDM, ChemCatChem, 8, 1020 (2016)
Xing T, Miao Z, Zheng L, Huai L, Caixia X, Xianhai Z, Yong S, Lei H, Shijie L, Tingzhou L, Lu L, ChemSusChem, 10, 2696 (2017)
Smith EL, Abbott AP, Ryder KS, Chem. Rev., 114(21), 11060 (2014)
Lynam JG, Kumar N, Wong MJ, Bioresour. Technol., 238, 684 (2017)
Quispe CAG, Coronado CJR, Carvalho JA, Renew. Sust. Energ. Rev., 27, 475 (2013)
Cooke RD, Twiddy DR, Reilly PJA, Fems Microbiol. Lett, 46, 369 (1987)
Fouladi P, Nobar RSD, Ahmadzade A, Shahriar HA, Agajanzade A, Ann. Biol. Res., 2, 485 (2011)
Supriyati, Budiarsana IGM, Praharani L, Krisnan R, Sutama IK, J. Animal Sci. Technol., 58, 30 (2016)
EFSA Journal, 9, 2353 (2011).
Kirk TK, Obst JR, Methods in Enzymology, Academic Press, 161, 87 (1988).
Lin LL, Yan R, Liu YQ, Jiang WJ, Bioresour. Technol., 101(21), 8217 (2010)
Li SG, Xu SP, Liu SQ, Yang C, Lu QH, Fuel Process. Technol., 85(8-10), 1201 (2004)
CLSI, 23 (2003).
Abdulmalek E, Zulkefli S, Rahman MBA, Malaysian J. Anal. Sci., 21, 20 (2017)
Kumar AK, Parikh BS, Pravakar M, Environ. Sci. Pollut. Res., 23, 9265 (2016)
Oregui-Bengoechea M, Gandarias I, Arias PL, Barth T, ChemSusChem, 10, 754 (2017)
Jablonsky M, Skulcova A, Kamenska L, Vrska M, Sima J, BioResources, 10, 8039 (2015)
Zhang CW, Xia SQ, Ma PS, Bioresour. Technol., 219, 1 (2016)
Zhang Q, De Oliveira Vigier K, Royer S, Jerome F, Chem. Soc. Rev., 41, 7108 (2012)
Hendriks ATWM, Zeeman G, Bioresour. Technol., 100(1), 10 (2009)
Ghai I, Ghai S, Infection and Drug Resistance, 11, 523 (2018).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로