ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 11, 2019
Accepted August 19, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling and experiment of gas desorption of bubble column with an external loop in the heterogeneous flow regime

Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, October 2019, 36(10), 1680-1687(8), 10.1007/s11814-019-0368-x
downloadDownload PDF

Abstract

This work introduces an external loop to a bubble column and presents enhanced gas exchange in the heterogeneous flow regime. Gas exchange experiments under the same amount of gas input were carried out with varying gas velocity to understand the difference of bubble characteristic between the bubble column (BCR) and the bubble column with an external loop (BCR-EL). The observation of rise and descending velocity of bubbles in the BCR-EL showed that the fraction of bubbles passing the downcomer continuously increases with the incremental superficial gas velocity. A gas molecule in the liquid phase is desorbed by another gas molecule, and this gas exchange was assumed to be a phenomenon that a reactant in the liquid phase is converted to a product. To test the validity of the assumed gas exchange as a reaction in the experiments with the BCR-EL, a modeling study was performed using Fisher-Tropsch synthesis. It prevailed that the syngas conversion was higher in the BCR at the homogeneous flow regime, while the BCR-EL at the heterogeneous flow regime (above 0.08m/s) had higher syngas conversion than the BCR due to higher gas recycle to the downcomer.

References

Deckwer WD, Louisi Y, Zaidi A, Ralek M, Ind. Eng. Chem. Process Des. Dev., 19, 699 (1980)
Yang JH, Hur YG, Lee HT, Yang JI, Kim HJ, Chun DH, Park JC, Jung H, Park SB, Chem. Eng. Res. Des., 90(10), 1457 (2012)
Vafajoo L, Savoji H, Fayal R, Baghaei A, Korean J. Chem. Eng., 28(8), 1727 (2011)
Cvetkovic S, Bugarski B, Obradovic B, Korean J. Chem. Eng., 35(2), 324 (2018)
Lim HS, Kang D, Lee JW, Appl. Catal. B: Environ., 202, 175 (2017)
Park J, Lee S, Lee JW, Ind. Eng. Chem. Res., 57(6), 2310 (2018)
Park JH, Kang RH, Lee JW, Korean J. Chem. Eng., 34(6), 1763 (2017)
Kang RH, Park JH, Kang DH, Lee JW, Korean J. Chem. Eng., 35(3), 734 (2018)
Todic B, Mandic M, Nikacevic N, Bukur DB, Korean J. Chem. Eng., 35(4), 875 (2018)
Yi M, Lee JW, Korean J. Chem. Eng., 33(12), 3401 (2016)
Lee JW, Hauan S, Lien KM, Westerberg AW, Proc.: Mathematical, Phys. Eng. Sci., 456, 1953 (2000).
Lee JW, Ko Y, Jung Y, Lee K, Yoon E, Comput. Chem. Eng., 21, S1105 (1997)
Wei L, Lu Y, Zhu J, Jiang G, Hu J, Teng H, Korean J. Chem. Eng., 35(10), 2117 (2018)
Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
Shnip A, Kolhatkar R, Swamy D, Joshi J, Int. J. Multiphase Flow, 18, 705 (1992)
Im H, Lee S, Lee JW, Chem. Eng. Res. Des., 136, 654 (2018)
Guedon GR, Besagni G, Inzoli F, Chem. Eng. Sci., 161, 138 (2017)
Schumpe A, Grund G, Can. J. Chem. Eng., 64, 891 (1986)
Vandu CO, Koop K, Krishna R, Chem. Eng. Sci., 59(22-23), 5417 (2004)
Joshi JB, Ranade VV, Gharat SD, Lele SS, Can. J. Chem. Eng., 68, 705 (1990)
Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Sci., 55(15), 2957 (2000)
Popovic MK, Robinson CW, AIChE J., 35, 393 (1989)
Choi KH, Lee WK, J. Chem. Technol. Biotechnol., 56, 51 (1993)
Bendjaballah N, Dhaouadi H, Poncin S, Midoux N, Hornut JM, Wild G, Chem. Eng. Sci., 54(21), 5211 (1999)
Chisti Y, Young MM, Biotechnol. Bioeng., 34, 1391 (1989)
de Araujo CA, Mondal D, Haase S, Warna J, Eranen K, Mikkola JP, Salmi T, Chem. Eng. Sci., 149, 277 (2016)
Schluter S, Steiff A, Weinspach PM, Chem. Eng. Process., 31, 97 (1992)
Maretto C, Krishna R, Catal. Today, 52(2-3), 279 (1999)
Orejas JA, Chem. Eng. Sci., 54(21), 5299 (1999)
Byun TG, Zeng AP, Deckwer WD, Bioprocess. Eng., 11, 167 (1994)
Jin B, Lant P, Chem. Eng. Sci., 59(12), 2379 (2004)
Luo XK, Lee DJ, Lau R, Yang GQ, Fan LS, AIChE J., 45(4), 665 (1999)
Van Der Laan GP, Beenackers A, Catal. Rev., 41, 255 (1999)
Yates IC, Satterfield CN, Energy Fuels, 5, 168 (1991)
Im H, Park J, Lee JW, ACS Omega, 4, 1329 (2019)
Bello RA, Robinson CW, Young MM, Biotechnol. Bioeng., 27, 369 (1985)
Tyn MT, Calus WF, J. Chem. Eng. Data, 20, 106 (1975)
Krishna R, van Baten JM, Urseanu MI, Ellenberger J, Chem. Eng. Sci., 56(2), 537 (2001)
Popovic M, Robinson CW, Biotechnol. Bioeng., 32, 301 (1988)
Outi A, Rautavuoma I, van der Baan HS, Appl. Catal., 1, 247 (1981)
Sarup B, Wojciechowski B, Can. J. Chem. Eng., 67, 62 (1989)
Sari A, Zamani Y, Taheri SA, Fuel Process. Technol., 90(10), 1305 (2009)
Moazami N, Wyszynski ML, Mahmoudi H, Tsolakis A, Zou Z, Panahifar P, Rahbar K, Fuel, 154, 140 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로