ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 15, 2019
Accepted July 15, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of low-cost HNO3-functionalized acetylene black carbon supported Pt-Ru/CAB nano electrocatalysts for the application in direct ethanol fuel cell (DEFC)

Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., India
hpramanik.che@itbhu.ac.in
Korean Journal of Chemical Engineering, October 2019, 36(10), 1688-1707(20), 10.1007/s11814-019-0343-6
downloadDownload PDF

Abstract

Ethanol electrooxidation was thoroughly investigated on laboratory synthesized Pt-Ru nano electrocatalysts. Low cost acetylene black carbon functionalized by HNO3 was used as support material for synthesized Pt-Ru/CAB electrocatalysts. The effect of synthesis methods on the major electrocatalytic properties of Pt-Ru/CAB electrocatalysts were studied thoroughly. The electrocatalysts Pt-Ru/CAB were manufactured by different chemical reduction methods. The electrocatalysts were designated as Pt-Ru/CAB-PLM for polyol reduction and Pt-Ru/CAB-FAM for formic acid reduction method, respectively. The electrocatalyst synthesis method and treatment of support material remarkably enhanced the catalytic performance of synthesized Pt-Ru/CAB electrocatalysts. The commercial Pt-Ru/C was selected as anode electrocatalyst for comparative study with the synthesis electrocatalyst in terms of performance in half cell study and in a single direct ethanol fuel cell as well. In the direct ethanol fuel cell, synthesized Pt-Ru/CAB-PLM produced maximum open circuit voltage of 0.71 V and highest power density of 6.02 mW/cm2 at a current density of 19.52mA/ cm2 at the room temperature of 35 °C. Whereas, the maximum power density of 5.13mW/cm2 at a current density of 18.70 mA/cm2 and open circuit voltage of 0.717 V were obtained for commercial Pt-Ru/C electrocatalyst at the same temperature (35 °C). The power density enhanced around 2.17 times when cell temperature was increased from 35 °C to 80 °C using anode electrocatalyst Pt-Ru/CAB-PLM. The performance of synthesized Pt-Ru/CAB-PLM is excellent for the ethanol electrooxidation and, thus, could replace commercial Pt-Ru/C.

References

Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
Antolini E, J. Power Sources, 170(1), 1 (2007)
Huang H, Wang X, J. Mater. Chem. A, 2, 6266 (2014)
Pramanik H, Basu S, Can. J. Chem. Eng., 85(5), 781 (2007)
Pramanik H, Wragg AA, Basu S, J. Appl. Electrochem., 38(9), 1321 (2008)
Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM, J. Power Sources, 105(2), 283 (2002)
Rathoure Amit Kumar, Pramanik Hiralal, Int. J. Hydrog. Energy, 41(34), 15287 (2016)
Colmati F, Antolini E, Gonzalez ER, J. Power Sources, 157(1), 98 (2006)
Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ, Electrochim. Acta, 52(1), 221 (2006)
Fatih K, Neburchilov V, Alzate V, Neagu R, Wang H, J. Power Sources, 195(21), 7168 (2010)
Zhou WJ, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, Xin Q, Appl. Catal. B: Environ., 46(2), 273 (2003)
Tsiakaras PE, J. Power Sources, 171(1), 107 (2007)
Lazaro MJ, Celorrio V, Calvillo L, Pastor E, Moliner R, J. Power Sources, 196(9), 4236 (2011)
Samad S, Loh KS, Wong WY, Lee TK, Sunarso J, Chong ST, Daud WRW, Int. J. Hydrog. Energy, 43(16), 7823 (2018)
Wikander K, Ekstrom H, Palmqvist AEC, Lundblad A, Holmberg K, Lindbergh G, Fuel Cells, 6, 21 (2006)
Shao YY, Yin GP, Zhang J, Gao YZ, Electrochim. Acta, 51(26), 5853 (2006)
Uchida M, Fukuoka Y, Sugawara Y, Eda N, Ohta A, J. Electrochem. Soc., 143(7), 2245 (1996)
Han K, Lee J, Kim H, Electrochim. Acta, 52(4), 1697 (2006)
Zhiani M, Jalili J, Rezaei B, Taghiabadi MM, Int. J. Hydrog. Energy, 38(13), 5419 (2013)
Lakshmi N, Rajalakshmi N, Dhathathreyan KS, J. Phys. D-Appl. Phys., 39, 2785 (2006)
Lee KS, Park HY, Cho YH, Park IS, Yoo SJ, Sung YE, J. Power Sources, 195(4), 1031 (2010)
Lee E, Murthy A, Manthiram A, Electrochim. Acta, 56(3), 1611 (2011)
Alvarez G, Alcaide F, Miguel O, Calvillo L, Lazaro MJ, Quintana JJ, Calderon JC, Pastor E, J. Solid State Electrochem., 14, 1027 (2010)
Nikolic VM, Zugic DL, Maksic AD, Saponjic DP, Kaninski MPM, Int. J. Hydrog. Energy, 36(17), 11004 (2011)
de la Fuente JLG, Martinez-Huerta MV, Rojas S, Hernandez-Fernandez P, Terreros P, Fierro JLG, Pena MA, Appl. Catal. B: Environ., 88(3-4), 505 (2009)
Huang KJ, Zhang JZ, Jia YL, Xing K, Liu YM, J. Alloy. Compd., 641, 119 (2015)
Tang JJ, Yang J, Zhou XY, Xie J, Chen GH, Microporous Mesoporous Mater., 143, 54 (2014)
Zu C, Su YS, Fu Y, Phys. Chem. Chem. Phys., 15, 2291 (2013)
Miao LX, Wang WK, Wang MJ, Wang AB, Yuan KG, Yang YS, J. Mater. Chem. A, 1, 11659 (2013)
Jin G, Mingang Z, Shijian Y, Xiaoyan Y, Shiwei W, Ionics, 24, 2219 (2018)
Goel J, Basu S, Int. J. Hydrog. Energy, 39(28), 15956 (2014)
Yang B, Lu Q, Wang Y, Zhuang L, Lu J, Liu P, Chem. Mater., 15, 3552 (2003)
Datta J, Singh S, Das S, Bandyopadhyay NR, Bull. Mater. Sci., 32, 643 (2009)
Li HQ, Sun GQ, Cao L, Jiang LH, Xin Q, Electrochim. Acta, 52(24), 6622 (2007)
Antolini E, Cardellini F, J. Alloy. Compd., 315, 118 (2001)
Antolini E, Giorgi F, Cardellini F, Passalacqua E, J. Solid State Electrochem., 5, 131 (2001)
Wang GX, Takeguchi T, Muhamad EN, Yamanaka T, Ueda W, Int. J. Hydrog. Energy, 36(5), 3322 (2011)
Tayal J, Rawat B, Basu S, Int. J. Hydrog. Energy, 37(5), 4597 (2012)
Chu D, Gilman S, J. Electrochem. Soc., 143(5), 1685 (1996)
Pires FI, Corradini PG, Paganin VA, Antolini E, Perez J, Ionics, 19, 1037 (2013)
Park KC, Jang IY, Wongwiriyapan W, Morimoto S, Kim YJ, Jung YC, Toya T, Endo M, J. Mater. Chem., 20, 5345 (2010)
Rolison DR, Hagans PL, Swider KE, Long JW, Langmuir, 15(3), 774 (1999)
Arico AS, Baglio V, Di Blasi A, Modica E, Antonucci PL, Antonucci V, J. Electroanal. Chem., 557, 167 (2003)
Raman RK, Shukla AK, Gayen A, Hegde MS, Priolkar KR, Sarode PR, Emura S, J. Power Sources, 157(1), 45 (2006)
Qian Y, Wen W, Adcock PA, Jiang Z, Hakim N, Saha MS, Mukerjee S, J. Phys. Chem. C, 112, 1146 (2008)
Tayal J, Rawat B, Basu S, Int. J. Hydrog. Energy, 36(22), 14884 (2011)
Alzate V, Fatih K, Wang H, J. Power Sources, 196(24), 10625 (2011)
Goel J, Basu S, Energy Procedia, 1, 66 (2012)
Larminie J, Dicks A, 2nd Ed., Wiley, Sussex, 53 (2003).
Figueiredo MC, Sorsa O, Aran-Ais RM, Doan N, Feliu JM, Kallio T, J. Catal., 329, 69 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로