Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 9, 2019
Accepted August 9, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis of bi-functionalized ionic liquid - mesoporous alumina composite material and its CO2 capture capacity
1Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China 2Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
shktang@tju.edu.cn
Korean Journal of Chemical Engineering, October 2019, 36(10), 1708-1715(8), 10.1007/s11814-019-0360-5
Download PDF
Abstract
Bi-functionalized ionic liquid (IL) - mesoporous alumina (MA) composite material was synthesized and used for CO2 capture. Ordered mesoporous alumina was synthesized by self-assembly method with aluminum isopropoxide as aluminum source. Then bi-functionalized ionic liquid 1-methoxyethyl-3-methyl imidazole glycinate ([MOEmim][Gly]) was immobilized on mesoporous alumina by ultrasonic-assisted impregnation method. Ordered mesostructure of alumina keeps well in the composite material. Compared with bi-functionalized ionic liquid, thermal stability of the composite material greatly improved. Finally, CO2 capture capacity of IL-MA composite material was studied under different temperatures. On the basis of both capture capacity and capture rate, 40 °C is the optimal temperature. The capture capacity is 1.42mol·mol IL-1 - equivalent to 144mg·g sorbent-1, which is higher than IL or MA alone. Furthermore, the capture capacity of composite material almost maintains constant after eight capture-regeneration cycles.
References
Fashandi H, Zarrebini M, Ghodsi A, Saghafi R, J. Colloid Interface Sci., 476, 35 (2016)
Dai ZD, Noble RD, Gin DL, Zhang XP, Deng LY, J. Membr. Sci., 497, 1 (2016)
Sistla YS, Khanna A, Chem. Eng. J., 273, 268 (2015)
Fan W, Liu Y, Wang K, J. Clean Prod., 125, 296 (2016)
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, ACS Appl. Mater. Inter., 5, 6937 (2013)
Zhang Y, Sunarso J, Liu S, Wang R, Int. J. Greenh. Gas Con., 12, 84 (2013)
Cho HK, Kim JE, Lim JS, Korean J. Chem. Eng., 34(5), 1475 (2017)
Uehara Y, Karami D, Mahinpey N, Ind. Eng. Chem. Res., 56(48), 14316 (2017)
Wang C, Luo H, Li H, Zhu X, Yu B, Dai S, Chem. Eur. J., 18, 2153 (2012)
Zhou LY, Shang XM, Fan J, Wang JJ, J. Chem. Thermodyn., 103, 292 (2016)
Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X, Chem Eur. J., 15, 3003 (2009)
Wan MM, Zhu HY, Li YY, Ma J, Liu S, Zhu JH, ACS Appl. Mater. Inter., 6, 12947 (2014)
Kumar K, Kumar A, J. Phys. Chem. C, 122, 8216 (2018)
Zhu JM, Xin F, Huang JH, Dong XC, Liu HM, Chem. Eng. J., 246, 79 (2014)
Nkinahamira F, Su TZ, Xie YQ, Ma GF, Wang HT, Li J, Chem. Eng. J., 326, 831 (2017)
Erto A, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F, Balsamo M, Lancia A, Montagnaro F, J. Colloid Interface Sci., 448, 41 (2015)
Xu LL, Zhao H, Song HL, Chou LJ, Int. J. Hydrog. Energy, 37(9), 7497 (2012)
Tian M, Long Y, Xu D, Wei SY, Dong ZP, J. Colloid Interface Sci., 521, 132 (2018)
Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ, J. Them. Ana. Calorim., 92, 601 (2008)
Lara Y, Romeo LM, Energy Procedia, 114, 2380 (2017)
Ekka B, Dhaka RS, Patel RK, Dash P, J. Clean Prod., 151, 303 (2017)
Gunathilake C, Gangoda M, Jaroniec M, Ind. Eng. Chem. Res., 55(19), 5598 (2016)
Jeon H, Ahn SH, Kim JH, Min YJ, Lee KB, J. Mater. Sci., 46(11), 4020 (2011)
Fuentes CES, Guzman-Lucero D, Torres-Rodriguez M, Likhanova NV, Bolanos JN, Olivares-Xometl O, Lijanova IV, Sep. Purif. Technol., 182, 59 (2017)
Balsamo M, Erto A, Lancia A, Totarella G, Montagnaro F, Turco R, Fuel, 218, 155 (2018)
Sun L, Luo J, Tang S, Chem. J. Chinese U., 38, 1578 (2017)
Qian W, Xu Y, Xie B, Ge Y, Shu H, Int. J. Greenh. Gas. Con., 56, 194 (2017)
Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465 (2008)
Tang S, Cui X, Gu L, Zhou H, Zhang X, Funct. Mater. Lett., 6, e13500 (2013)
Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926 (2002)
Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nhien NV, Hadri ME, Bresson S, J. Mol. Struct., 1173, 653 (2018)
Yu WH, Zhang H, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX, Fuel, 236, 861 (2019)
Zhang GJ, Zhao PY, Xu Y, Yang ZX, Cheng HZ, Zhang YF, ACS Appl. Mater. Inter., 10, 34340 (2018)
Dai ZD, Noble RD, Gin DL, Zhang XP, Deng LY, J. Membr. Sci., 497, 1 (2016)
Sistla YS, Khanna A, Chem. Eng. J., 273, 268 (2015)
Fan W, Liu Y, Wang K, J. Clean Prod., 125, 296 (2016)
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, ACS Appl. Mater. Inter., 5, 6937 (2013)
Zhang Y, Sunarso J, Liu S, Wang R, Int. J. Greenh. Gas Con., 12, 84 (2013)
Cho HK, Kim JE, Lim JS, Korean J. Chem. Eng., 34(5), 1475 (2017)
Uehara Y, Karami D, Mahinpey N, Ind. Eng. Chem. Res., 56(48), 14316 (2017)
Wang C, Luo H, Li H, Zhu X, Yu B, Dai S, Chem. Eur. J., 18, 2153 (2012)
Zhou LY, Shang XM, Fan J, Wang JJ, J. Chem. Thermodyn., 103, 292 (2016)
Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X, Chem Eur. J., 15, 3003 (2009)
Wan MM, Zhu HY, Li YY, Ma J, Liu S, Zhu JH, ACS Appl. Mater. Inter., 6, 12947 (2014)
Kumar K, Kumar A, J. Phys. Chem. C, 122, 8216 (2018)
Zhu JM, Xin F, Huang JH, Dong XC, Liu HM, Chem. Eng. J., 246, 79 (2014)
Nkinahamira F, Su TZ, Xie YQ, Ma GF, Wang HT, Li J, Chem. Eng. J., 326, 831 (2017)
Erto A, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F, Balsamo M, Lancia A, Montagnaro F, J. Colloid Interface Sci., 448, 41 (2015)
Xu LL, Zhao H, Song HL, Chou LJ, Int. J. Hydrog. Energy, 37(9), 7497 (2012)
Tian M, Long Y, Xu D, Wei SY, Dong ZP, J. Colloid Interface Sci., 521, 132 (2018)
Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ, J. Them. Ana. Calorim., 92, 601 (2008)
Lara Y, Romeo LM, Energy Procedia, 114, 2380 (2017)
Ekka B, Dhaka RS, Patel RK, Dash P, J. Clean Prod., 151, 303 (2017)
Gunathilake C, Gangoda M, Jaroniec M, Ind. Eng. Chem. Res., 55(19), 5598 (2016)
Jeon H, Ahn SH, Kim JH, Min YJ, Lee KB, J. Mater. Sci., 46(11), 4020 (2011)
Fuentes CES, Guzman-Lucero D, Torres-Rodriguez M, Likhanova NV, Bolanos JN, Olivares-Xometl O, Lijanova IV, Sep. Purif. Technol., 182, 59 (2017)
Balsamo M, Erto A, Lancia A, Totarella G, Montagnaro F, Turco R, Fuel, 218, 155 (2018)
Sun L, Luo J, Tang S, Chem. J. Chinese U., 38, 1578 (2017)
Qian W, Xu Y, Xie B, Ge Y, Shu H, Int. J. Greenh. Gas. Con., 56, 194 (2017)
Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465 (2008)
Tang S, Cui X, Gu L, Zhou H, Zhang X, Funct. Mater. Lett., 6, e13500 (2013)
Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926 (2002)
Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nhien NV, Hadri ME, Bresson S, J. Mol. Struct., 1173, 653 (2018)
Yu WH, Zhang H, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX, Fuel, 236, 861 (2019)
Zhang GJ, Zhao PY, Xu Y, Yang ZX, Cheng HZ, Zhang YF, ACS Appl. Mater. Inter., 10, 34340 (2018)