Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 16, 2019
Accepted August 22, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of temperature on the performance of aqueous redox flow battery using carboxylic acid functionalized alloxazine and ferrocyanide redox couple
Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Korean Journal of Chemical Engineering, October 2019, 36(10), 1732-1739(8), 10.1007/s11814-019-0374-z
Download PDF
Abstract
Carboxylic acid functionalized alloxazine (alloxazine-COOH) and ferrocyanide are utilized as active species for aqueous redox flow battery (ARFB), and the effect of operating temperature on the performance of ARFB was investigated. Based on electrochemical characterization, although ferrocyanide is in a quasi-reversible state at room temperature, the state becomes irreversible as temperature increases. By the use of carbon felt (CF) containing carbonoxygen functional groups, the activity of ferrocyanide is enhanced without side effect, such as irreversible redox reactivity. This is because the hydrophilic (charge-dipole) interaction between dipole groups (hydroxyl and carbonyl groups) onto CF and ferricyanide ions promotes the oxidation reaction of ferricyanide. Though alloxazine-COOH coated on glassy carbon electrode shows irreversible state compared to ferrocyanide as temperature increases, the activity of alloxazine- COOH is also enhanced by using the hydrophilic group doped CF. To prove whether the redox reactivity of the two active species is improved with increase in temperature, the performance of ARFBs using them was evaluated in the different temperature conditions. When the temperature of both anolyte and catholyte is 45 °C, average discharge capacity and state of charge are 24 Ahr·L-1 and 90%, and the values are reduced to 23 Ahr·L-1 and 86% in ARFB of only catholyte heating, 22 Ahr·L-1 and 82% in ARFB of only anolyte heating and 21.3 Ahr·L-1 and 80% with no heating. Based on that, it is speculated that the operation temperature can be a factor in determining the performance of ARFB.
Keywords
References
Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y, Prog. Nat. Sci., 19, 291 (2009)
Lee KJ, Koomson S, Lee CG, Korean J. Chem. Eng., 36(4), 600 (2019)
Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389 (2018)
Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
Ryu JH, Korean J. Chem. Eng., 35(2), 328 (2018)
Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
Christwardana M, Chung YJ, Tannia DC, Kwon YC, Korean J. Chem. Eng., 35(12), 2421 (2018)
Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970 (2013)
Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27 (2013)
Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991)
Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Janag JH, Kim HJ, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383 (2017)
Jung HY, Jeong S, Kwon Y, Electrochem. Soc., 163, A5090 (2016)
Oriji G, Katayama Y, Miura T, Electrochim. Acta, 49(19), 3091 (2004)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
Wang W, Nie Z, Chen B, Chen F, Luo Q, Wei X, Xia GG, Skyllas-Kazacos M, Li L, Yang Z, Adv. Eng. Mater., 2, 487 (2012)
Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189 (2007)
Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources, 39, 147 (1992)
Zhang MQ, Moore M, Watson JS, Zawodzinski TA, Counce RM, J. Electrochem. Soc., 159(8), A1183 (2012)
Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388 (2018)
Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W, Nano Lett., 13, 1330 (2013)
Suarez DJ, Gonzalez Z, Blanco C, Granda M, Menendez R, Santamaria R, ChemSusChem, 7, 914 (2014)
Gonzalez Z, Sanchez A, Blanco C, Granda M, Menendez R, Santamaria R, Electrochem. Commun., 13, 1379 (2011)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371 (2014)
Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nature Energy, 1, 16102 (2016)
Hu B, DeBruler C, Rhodes Z, Liu TL, J. American Chem. Soc., 139, 1207 (2017)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882 (2018)
Luo J, Sam A, Hu B, DeBruler C, Wei X, Wang W, Liu TL, Nano Energy, 42, 215 (2017)
Zhang C, Zhao TS, Xu Q, An L, Zhao G, Appl. Energy, 155, 349 (2015)
Stevens KWH, Pryce MHL, Proc. R. Soc. Lond. A Math. Phys. Sci., 2019, 543 (1953)
Oosterhuis WT, Lang G, Phys. Rev., 178, 439 (1969)
Dunbar KR, Heintz RA, Prog. Inorg. Chem., 45, 283 (1997)
Gembicky M, Boca R, Renz F, Inorg. Chem. Commun., 3, 662 (2000)
Bahadori L, Chakrabarti MH, Manan NSA, Hashim MA, Mjalli FS, AlNashef IM, Brandon N, PloS. One, 10, e01442 (2015)
Nishimoto K, Watanabe Y, Yagi K, Biochim. Biophys. Acta Enzymol., 526, 34 (1978)
Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ, Sci. Rep., 4, 6906 (2014)
Titirici MM, Antonietti M, Chem. Soc. Rev., 39, 103 (2010)
Choudhury SD, Mohanty J, Bhasikuttan AC, Pal H, J. Phys. Chem. B, 114(33), 10717 (2010)
Lee KJ, Koomson S, Lee CG, Korean J. Chem. Eng., 36(4), 600 (2019)
Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389 (2018)
Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
Ryu JH, Korean J. Chem. Eng., 35(2), 328 (2018)
Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
Christwardana M, Chung YJ, Tannia DC, Kwon YC, Korean J. Chem. Eng., 35(12), 2421 (2018)
Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970 (2013)
Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27 (2013)
Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991)
Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Janag JH, Kim HJ, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383 (2017)
Jung HY, Jeong S, Kwon Y, Electrochem. Soc., 163, A5090 (2016)
Oriji G, Katayama Y, Miura T, Electrochim. Acta, 49(19), 3091 (2004)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
Wang W, Nie Z, Chen B, Chen F, Luo Q, Wei X, Xia GG, Skyllas-Kazacos M, Li L, Yang Z, Adv. Eng. Mater., 2, 487 (2012)
Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189 (2007)
Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources, 39, 147 (1992)
Zhang MQ, Moore M, Watson JS, Zawodzinski TA, Counce RM, J. Electrochem. Soc., 159(8), A1183 (2012)
Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388 (2018)
Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W, Nano Lett., 13, 1330 (2013)
Suarez DJ, Gonzalez Z, Blanco C, Granda M, Menendez R, Santamaria R, ChemSusChem, 7, 914 (2014)
Gonzalez Z, Sanchez A, Blanco C, Granda M, Menendez R, Santamaria R, Electrochem. Commun., 13, 1379 (2011)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371 (2014)
Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nature Energy, 1, 16102 (2016)
Hu B, DeBruler C, Rhodes Z, Liu TL, J. American Chem. Soc., 139, 1207 (2017)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882 (2018)
Luo J, Sam A, Hu B, DeBruler C, Wei X, Wang W, Liu TL, Nano Energy, 42, 215 (2017)
Zhang C, Zhao TS, Xu Q, An L, Zhao G, Appl. Energy, 155, 349 (2015)
Stevens KWH, Pryce MHL, Proc. R. Soc. Lond. A Math. Phys. Sci., 2019, 543 (1953)
Oosterhuis WT, Lang G, Phys. Rev., 178, 439 (1969)
Dunbar KR, Heintz RA, Prog. Inorg. Chem., 45, 283 (1997)
Gembicky M, Boca R, Renz F, Inorg. Chem. Commun., 3, 662 (2000)
Bahadori L, Chakrabarti MH, Manan NSA, Hashim MA, Mjalli FS, AlNashef IM, Brandon N, PloS. One, 10, e01442 (2015)
Nishimoto K, Watanabe Y, Yagi K, Biochim. Biophys. Acta Enzymol., 526, 34 (1978)
Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ, Sci. Rep., 4, 6906 (2014)
Titirici MM, Antonietti M, Chem. Soc. Rev., 39, 103 (2010)
Choudhury SD, Mohanty J, Bhasikuttan AC, Pal H, J. Phys. Chem. B, 114(33), 10717 (2010)