Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 10, 2019
Accepted August 5, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization
Taewan Kim
Hyung-Eun Kim1
Jiyoon Cho2
Hak-Hyeon Kim2
Jiwon Seo2
Junghun Lee2
Joon-Young Choi3
Changha Lee2†
School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea 1Center for Water Resource Cycle Research, KIST School, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea 2School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 3Hyorim Industries Inc., 96-8, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13517, Korea
leechangha@snu.ac.kr
Korean Journal of Chemical Engineering, November 2019, 36(11), 1785-1790(6), 10.1007/s11814-019-0353-4
Download PDF
Abstract
The inactivation kinetics of E. coli and MS2 coliphage by singlet oxygen (1O2) were investigated in a homogeneous photosensitization system using Rose Bengal (RB) and visible light illumination (the Vis/RB system). The inactivation of E. coli and MS2 in the Vis/RB system was monitored over time with variations of several parameters such as pH, light intensity, concentration of RB, and the presence of dissolved oxygen. In addition, the concentration of 1O2 generated by the Vis/RB system was quantified using furfuryl alcohol under each microbial inactivation conditions. Based on the obtained results, the degree of microbial inactivation was quantitatively correlated with 1O2 exposure using the (delayed) Chick-Watson model. The Ct (concentration-time product) values of 1O2 required for 2 log microbial inactivation were found to be 1.3×10-4 mg·min/L for E. coli and 1.9×10-5 mg·min/L for MS2, respectively. The inactivation of E. coli exhibited an initial lag phase until 0.5×10-4 mg·min/L of Ct.
References
Kohn T, Nelson KL, Environ. Sci. Technol., 41, 192 (2007)
Cho M, Chung H, Choi W, Yoon J, Water Res., 38, 1069 (2004)
Horie Y, David DA, Taya M, Tone S, Ind. Eng. Chem. Res., 35(11), 3920 (1996)
Cho M, Lee J, Mackeyev Y, Wilson LJ, Alvarez PJJ, Hughes JB, Kim JH, Environ. Sci. Technol., 44, 6685 (2010)
Mamane H, Shemer H, Linden KG, J. Hazard. Mater., 146(3), 479 (2007)
Liu C, Kong DS, Hsu PC, Yuan HT, Lee HW, Liu YY, Wang HT, Wang S, Yan K, Lin DC, Maraccini PA, Parker KM, Boehm AB, Cui Y, Nat. Nanotechnol., 11(12), 1098 (2016)
Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 345 (1987)
Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 605 (1989)
Dahl TA, Midden WR, Necker DC, J. Bacteriol., 171, 2188 (1988)
Bezman SA, Burtis PA, Izod TPJ, Thayer MA, Photochem. Photobiol., 28, 325 (1978)
Hotze EM, Badireddy AR, Chellam S, Weisner MR, Environ. Sci. Technol., 43, 6639 (2009)
Muller-Breitkreutz K, Mohr H, Brivida K, Seis H, J. Photoch. Photobio. B-Biol., 30, 63 (1995)
Schafer M, Schmitz C, Facius R, Horneck G, Milow B, Funken KH, Ortner J, Photochem. Photobiol., 71, 514 (2000)
Silverman AI, Peterson BM, Boehm AB, McNeill K, Nelson KL, Environ. Sci. Technol., 47, 1870 (2013)
Ryberg E, Chu C, Kim JH, Environ. Sci. Technol., 52, 13361 (2018)
Cho M, Chung H, Choi W, Yoon J, Appl. Environ. Microbiol., 71, 270 (2005)
Foster HA, Ditta IB, Varghese S, Steele A, Appl. Microbiol. Biotechnol., 90(6), 1847 (2011)
Castro-Alferez M, Polo-Lopez MI, Fernandez-Ibanez P, Sci. Rep., 6, 38145 (2016)
Amrullah A, Paksung N, Matsumura Y, Korean J. Chem. Eng., 36(3), 433 (2019)
Brame J, Long M, Li Q, Alvarez P, Water Res., 60, 259 (2014)
Foote CS, Science, 162, 963 (1968)
Foote CS, Accounts Chem. Res., 1, 104 (1968)
Jimenez-Hernandez ME, Manjon F, Garcia-Fresnadillo D, Orellana G, Sol. Energy, 80(10), 1382 (2006)
Buck JD, Cleverdon RC, Limnol. Oceanogr., 5, 78 (1960)
Park SY, Kim CG, Environ. Eng. Res., 23, 282 (2018)
Wentworth BB, French L, Exp. Biol. Med., 135, 253 (1970)
Scully FE, Hoigne J, Chemosphere, 16, 681 (1987)
Kouame Y, Haas CN, Water Res., 25, 1027 (1991)
Hunt NK, Marinas BJ, Water Res., 31, 1355 (1997)
Rennecker JL, Marinas BJ, Owens JH, Rice EW, Water Res., 33, 2481 (1999)
Muller DJ, Engel A, J. Mol. Biol., 285, 1347 (1999)
Cho M, Kim J, Kim JY, Yoon J, Kim JH, Water Res., 44, 3410 (2010)
Cho M, Lee Y, Chung H, Yoon J, Appl. Environ. Microbiol., 70, 1129 (2004)
Cho M, Doctoral dissertation, Seoul National University, Seoul, Korea (2005).
Cho M, Chung H, Choi W, Yoon J, Water Res., 38, 1069 (2004)
Horie Y, David DA, Taya M, Tone S, Ind. Eng. Chem. Res., 35(11), 3920 (1996)
Cho M, Lee J, Mackeyev Y, Wilson LJ, Alvarez PJJ, Hughes JB, Kim JH, Environ. Sci. Technol., 44, 6685 (2010)
Mamane H, Shemer H, Linden KG, J. Hazard. Mater., 146(3), 479 (2007)
Liu C, Kong DS, Hsu PC, Yuan HT, Lee HW, Liu YY, Wang HT, Wang S, Yan K, Lin DC, Maraccini PA, Parker KM, Boehm AB, Cui Y, Nat. Nanotechnol., 11(12), 1098 (2016)
Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 345 (1987)
Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 605 (1989)
Dahl TA, Midden WR, Necker DC, J. Bacteriol., 171, 2188 (1988)
Bezman SA, Burtis PA, Izod TPJ, Thayer MA, Photochem. Photobiol., 28, 325 (1978)
Hotze EM, Badireddy AR, Chellam S, Weisner MR, Environ. Sci. Technol., 43, 6639 (2009)
Muller-Breitkreutz K, Mohr H, Brivida K, Seis H, J. Photoch. Photobio. B-Biol., 30, 63 (1995)
Schafer M, Schmitz C, Facius R, Horneck G, Milow B, Funken KH, Ortner J, Photochem. Photobiol., 71, 514 (2000)
Silverman AI, Peterson BM, Boehm AB, McNeill K, Nelson KL, Environ. Sci. Technol., 47, 1870 (2013)
Ryberg E, Chu C, Kim JH, Environ. Sci. Technol., 52, 13361 (2018)
Cho M, Chung H, Choi W, Yoon J, Appl. Environ. Microbiol., 71, 270 (2005)
Foster HA, Ditta IB, Varghese S, Steele A, Appl. Microbiol. Biotechnol., 90(6), 1847 (2011)
Castro-Alferez M, Polo-Lopez MI, Fernandez-Ibanez P, Sci. Rep., 6, 38145 (2016)
Amrullah A, Paksung N, Matsumura Y, Korean J. Chem. Eng., 36(3), 433 (2019)
Brame J, Long M, Li Q, Alvarez P, Water Res., 60, 259 (2014)
Foote CS, Science, 162, 963 (1968)
Foote CS, Accounts Chem. Res., 1, 104 (1968)
Jimenez-Hernandez ME, Manjon F, Garcia-Fresnadillo D, Orellana G, Sol. Energy, 80(10), 1382 (2006)
Buck JD, Cleverdon RC, Limnol. Oceanogr., 5, 78 (1960)
Park SY, Kim CG, Environ. Eng. Res., 23, 282 (2018)
Wentworth BB, French L, Exp. Biol. Med., 135, 253 (1970)
Scully FE, Hoigne J, Chemosphere, 16, 681 (1987)
Kouame Y, Haas CN, Water Res., 25, 1027 (1991)
Hunt NK, Marinas BJ, Water Res., 31, 1355 (1997)
Rennecker JL, Marinas BJ, Owens JH, Rice EW, Water Res., 33, 2481 (1999)
Muller DJ, Engel A, J. Mol. Biol., 285, 1347 (1999)
Cho M, Kim J, Kim JY, Yoon J, Kim JH, Water Res., 44, 3410 (2010)
Cho M, Lee Y, Chung H, Yoon J, Appl. Environ. Microbiol., 70, 1129 (2004)
Cho M, Doctoral dissertation, Seoul National University, Seoul, Korea (2005).