ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 5, 2019
Accepted October 8, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

1College of Materials Science and Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China 2Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
Korean Journal of Chemical Engineering, November 2019, 36(11), 1826-1838(13), 10.1007/s11814-019-0400-1
downloadDownload PDF

Abstract

Due to increasing interest in the application of perovskites as promising adsorbents, the present study looks at how central composite design (CCD), a subset of response surface methodology (RSM), can statistically play a role in producing optimum lanthanum oxide-cobalt perovskite type nanoparticles (LaCoO3) by using a modified proteic synthesis method. The optimum LaCoO3 produced was tested for its capability in removing methyl orange (MO) and rhodamine B (RhB) dyes from aqueous solution. Calcination temperature and calcination time were optimized with the responses being percentage yield, MO and RhB removal. The best temperature and calcination time obtained were 775 °C and 62mins, respectively, giving good and appreciable values for the three responses. The resulting optimal LaCoO3 was characterized by Fourier transform infra-red (FTIR), ultraviolet-visible spectrophotometry (UV/vis), scanning electron microscopy (SEM), pH of zero point charge (pHpzc) as well as BET analysis, yielding a mesoporous adsorbent with surface area of 61.130m2 g-1 as well as 223.55 and 239.45mg g-1 as the monolayer adsorption capacity values for MO and RhB, respectively. Freundlich model was the best in describing the equilibrium adsorption data with respect to both MO and RhB with the kinetic data for the two dyes both obeying pseudo-second-order kinetics model.

References

Argun ME, Guclu D, Karatas M, J. Ind. Eng. Chem., 20(3), 1079 (2014)
Shaban M, Abukhadra MR, Khan AAP, Jibali BM, J. Taiwan Inst. Chem. Eng., 82, 102 (2018)
Banat F, Al-Asheh S, Al-Ahmad R, Bni-Khalid F, Bioresour. Technol., 98(16), 3017 (2007)
Crini G, Bioresour. Technol., 97(9), 1061 (2006)
Brillas E, Martinez-Huitle CA, Appl. Catal. B: Environ., 166-167, 603 (2015)
Khandegar V, Saroha AK, J. Environ. Manage., 128, 949 (2013)
Bradha M, Vijayaraghavan T, Suriyaraj SP, Selvakumar R, Ashok AM, J. Rare Earths, 33, 160 (2015)
Santhi T, Prasad AL, Manonmani S, Arab. J. Chem., 7, 494 (2014)
Chen YD, Chen WQ, Huang B, Huang MJ, Chem. Eng. Res. Des., 91(9), 1783 (2013)
Dehghani MH, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi M, Afsharnia M, McKay G, Chem. Eng. Res. Des., 140, 102 (2018)
Garba ZN, Shikin FBS, Afidah AR, J. Chem. Eng. Chem. Res., 2, 623 (2015)
Garba ZN, Afidah AR, Bello BZ, J. Environ. Chem. Eng., 3, 2892 (2015)
Tavakkoli H, Yazdanbakhsh M, Microporous Mesoporous Mater., 176, 86 (2013)
Yazdanbakhsh M, Tavakkoli H, Hosseini SM, Desalination, 281, 388 (2011)
Alguero M, Ramos P, Jimenez R, Amorin H, Vila E, Castro A, Acta Mater., 60, 1174 (2012)
Moure C, Pena O, Solid State Chem., 43, 148 (2015)
Shetkar RG, Salker AV, J. Mater. Sci. Technol., 26, 1098 (2010)
Guo R, Jiao T, Li R, Chen Y, Guo W, Zhang L, Zhou J, Zhang Q, Peng Q, ACS Sustainable Chem. Eng., 6, 1279 (2018)
Li K, Jiao T, Xing R, Zou G, Zhou J, Zhang L, Peng Q, Sci. China Mater., 61, 728 (2018)
Guo R, Wang R, Yin J, Jiao T, Huang H, Zhao X, Zhang L, Li Q, Zhou J, Peng Q, Nanomater., 9, 127 (2019)
Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q, ACS Omega, 4, 1897 (2019)
Santos AG, Leite JO, Souza MJB, Gimenez IF, Pedrosa AMG, Ceram. Int., 44, 5743 (2018)
Grabowska E, Appl. Catal. B: Environ., 186, 97 (2016)
Garba ZN, Afidah AR, J. Anal. Appl. Pyrolysis, 107, 306 (2014)
Nsor-Atindana J, Chen M, Goff HD, Zhong F, Sharif HR, Li Y, Carbohydr. Polym., 172, 159 (2017)
Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B, Int. J. Pharm., 473, 64 (2014)
Zhang X, Wu Y, Li X, Meng X, Shi H, Wu Z, Zhang J, Korean J. Chem. Eng., 36(5), 753 (2019)
Garba ZN, Afidah AR, Hamza SA, J. Environ. Chem. Eng., 2, 1423 (2014)
Ahmad MA, Alrozi R, Chem. Eng. J., 165(3), 883 (2010)
Oo CW, Kassim MJ, Pizzi A, Ind. Crop. Prod., 30, 152 (2009)
Ngah WSW, Fatinathan S, Yosop NA, Desalination, 272(1-3), 293 (2011)
Popoola LT, Yusuff AS, Adesina OA, Lala MA, J. Environ. Sci. Technol., 12, 65 (2019)
Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M, Fuel Proces. Technol., 106, 408 (2013)
Auta M, Hameed BH, Chem. Eng. J., 175, 233 (2011)
Deng H, Yang L, Tao GH, Dai JL, J. Hazard. Mater., 166(2-3), 1514 (2009)
Deng SB, Nie Y, Du ZW, Huang Q, Meng PP, Wang B, Huang J, Yu G, J. Hazard. Mater., 282, 150 (2015)
Sahu JN, Acharya J, Meikap BC, Bioresour. Technol., 10, 1974 (2010)
Ahmad MA, Alrozi R, Chem. Eng. J., 171, 510 (2010)
Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A, Bioresour. Technol., 99(11), 4887 (2008)
Sentorun-Shalaby CD, Ucak-AstarliogLu MG, Artok L, Sarici C, Microporous Mesoporous Mater., 88, 126 (2006)
Zhang L, Zhang B, Wu T, Sun D, Li Y, Colloids Surf. A: Physicochem. Eng. Asp., 484, 118 (2015)
Tanhaei B, Ayati A, Lahtinen M, Sillanpaa M, Chem. Eng. J., 259, 1 (2015)
Soltani T, Lee BK, J. Colloid Interface Sci., 481, 168 (2016)
Wang SY, Yang B, Liu YP, J. Colloid Interface Sci., 507, 225 (2017)
Cheng ZL, Li YX, Liu Z, Ecotoxicol. Environ. Safety, 148, 585 (2018)
Ma Y, Wu XY, Zhang GK, Appl. Catal. B: Environ., 205, 262 (2017)
Santos JC, Souza MJB, Mesquita ME, Pedrosa AMG, Sci. Plen., Sci. Plen., 8, 1 (2012)
Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
Margellou AG, Papadas IT, Petrakis DE, Armatas GS, Mater. Res. Bull., 83, 491 (2016)
Shi QQ, Zhang J, Zhang CL, Li C, Zhang B, Hu WW, Xu JT, J. Environ. Sci., 22, 91 (2010)
Tan CHC, Sabar S, Hussin MH, South African J. Chem. Eng., 26, 11 (2018)
Benaicha A, Omari M, J. Fundam. Appl. Sci., 10, 132 (2018)
Atkins PW, Overton TL, Rourke JP, Weller MT, Shriver and Atkins’ W. H. Freeman and Company, 5th Ed. New York (2010).
Santos JC, Souza MJB, Ruiz JAC, Melo DMA, Mesquita ME, Pedrosa AMG, J. Braz. Chem. Soc., 23, 1858 (2012)
Jones CJ, Bookman, Porto Alegre, RS (2002).
Hosseini S, Khan MA, Malekbala MR, Cheah W, Choong TSY, Chem. Eng. J., 171(3), 1124 (2011)
Huang R, Liu Q, Huo J, Yang B, Arab. J. Chem., 10, 24 (2017)
Ma HZ, Wang B, Luo XY, J. Hazard. Mater., 149(2), 492 (2007)
Khamparia S, Jaspal D, J. Environ. Manage., 183, 786 (2016)
Satapathy PK, Das M, Sahoo AK, Indian J. Chem. Technol., 21(4), 257 (2014)
Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD, J. Chem. Eng. Data, 55(12), 5777 (2010)
Maurya NS, Mittal AK, Cornel P, Rother E, Bioresour. Technol., 97(3), 512 (2006)
Soltani T, Entezari MH, Chem. Eng. J., 223, 145 (2013)
Hameed BH, El-Khaiary MI, J. Hazard. Mater., 159(2-3), 574 (2008)
Hayeeye F, Sattar M, Chinpa W, Sirichote O, Colloids Surf. A: Physicochem. Eng. Asp., 513, 259 (2017)
Bahrudin NN, Nawi MA, Ismail WINW, Korean J. Chem. Eng., 35(7), 1450 (2018)
Anjum MN, Zia KM, Zhu L, Rashid H, Ahmad MN, Zuber M, Tang H, Korean J. Chem. Eng., 31(12), 2192 (2014)
Liu JS, Ma S, Zang LJ, Appl. Surf. Sci., 265, 393 (2013)
Zhai L, Bai Z, Zhu Y, Wang B, Luo W, Chinese J. Chem. Eng., 26, 657 (2018)
Sattar M, Hayeeye F, Chinpa W, Sirichote O, J. Environ. Chem. Eng., 5, 3780 (2017)
Largitte L, Pasquier R, Chem. Eng. Res. Des., 112, 289 (2016)
Largitte L, Pasquier R, Chem. Eng. Res. Des., 109, 495 (2016)
Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmoune F, Madani K, Remini H, Appl. Clay Sci., 153, 38 (2018)
Saha P, Chowdhury S, Intech, 16, 349 (2011)
Duranoglu D, Trochimczuk AW, Beker U, Chem. Eng. J., 187, 193 (2012)
Jiancheng S, Renlong L, Haiping W, Zuohua L, Xiaolong S, Changyuan T, J. Taiwan Inst. Chem. Eng., 82, 351 (2018)
Kyzas GZ, Lazaridis NK, Mitropoulos AC, Chem. Eng. J., 189-190, 148 (2012)
Liao P, Ismael ZM, Zhang W, Yuan S, Tong M, Wang K, Bao J, Chem. Eng. J., 195-196, 339 (2012)
Hernandez-Ramirez O, Holmes SM, J. Mater. Chem., 18, 2751 (2008)
Mahmoodi NM, Hayati B, Arami M, Lan C, Desalination, 268(1-3), 117 (2011)
Tan IAW, Ahmad AL, Hameed BH, J. Hazar. Mater., 164, 473 (2009)
Qiu YP, Zheng ZZ, Zhou ZL, Sheng GD, Bioresour. Technol., 100(21), 5348 (2009)
Yu Y, Murthy BN, Shapter JG, Constantopoulos KT, Voelcker NH, Ellis AV, J. Hazard. Mater., 260, 330 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로