Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 13, 2019
Accepted August 28, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Energy saving in carbon dioxide hydrate formation process using Boehmite nanoparticles
Department of Chemical Engineering, Razi University, Kermanshah, Iran 1Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
Korean Journal of Chemical Engineering, November 2019, 36(11), 1859-1868(10), 10.1007/s11814-019-0375-y
Download PDF
Abstract
This work reports on an attempt to save energy in the carbon dioxide hydrate formation process. The kinetics of carbon dioxide hydrate formation induced by synthesized Boehmite (AlOOH) nanoparticles was investigated at 274.15 K, different initial pressures (29, 32 and 35 bar), impeller speed (50, 100 and 200 rpm) and AlOOH concentrations (25, 50 75, 100, 200 ppm). It was also observed that there is a desirable concentration for AlOOH nanoparticles in which the maximum rate of gas consumption and minimum growth and induction time was obtained. According to the results at 29 bar and 100 rpm and in the presence of 50 ppm AlOOH, the gas consumption rate increased to 150%, while the induction time and growth time decreased about 82.8% and 46.1%, respectively. The maximum energy saving of 49.7% for 50 ppm AlOOH was observed, which is very important for industrial applications of carbon dioxide hydrate. The presented technique is useful for intensification of gas hydrate-based CO2 capture processes in the oil and gas industry with minimum energy consumption.
References
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
Kyung D, Lee K, Kim H, Lee W, Int. J. GreenH. Gas Con., 20, 285 (2014)
Guo TM, Wu BH, Zhu YH, Fan SS, Chen GJ, J. Petrol. Sci. Eng., 41, 11 (2004)
Englezos P, Ind. Eng. Chem. Res., 32, 1251 (1993)
Chun MK, Lee H, Korean J. Chem. Eng., 13(6), 620 (1996)
Moridis GJ, Sloan ED, Energy Conv. Manag., 48(6), 1834 (2007)
Lee JW, Dotel P, Park J, Yoon JH, Korean J. Chem. Eng., 12, 2507 (2015)
Lee JW, Chun MK, Lee KM, Kim YJ, Lee H, Korean J. Chem. Eng., 19(4), 673 (2002)
Sloan ED, Ind. Eng. Chem. Res., 39, 3123 (2000)
Almenningen S, Gauteplass J, Fotland P, Aastveit GL, Barth T, Ersland G, Int. J. GreenH. Gas Con., 79, 272 (2018)
Mori T, Mori YH, Int. J. Refrig., 12, 259 (1989)
Inaba H, Int. J. Therm. Sci., 39, 991 (2000)
Sloan ED, Fleyfel F, Fluid Phase Equilib., 76, 123 (1992)
Pivezhani F, Roosta H, Dashti A, Mazloumi SH, Energy, 113, 215 (2016)
Kumar A, Sakpal T, Linga P, Kumar R, Fuel, 105, 664 (2013)
ZareNezhad B, Montazeri V, Energy Conv. Manag., 79, 289 (2014)
Wang XL, Dennis M, Chem. Eng. Sci., 155, 294 (2016)
Nguyen Ngoc N., Nguyen Anh V., Nguyen Khoi T., Rintoul Llew, Dang Liem X., Fuel, 185, 517 (2016)
Babu P, Chin WI, Kumar R, Linga P, Energy Procedia, 61, 1780 (2014)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 36(3), 1394 (2011)
Li XS, Xu CG, Chen ZY, Cai J, Int. J. Hydrog. Energy, 37(1), 720 (2012)
Herslund PJ, Thomsen K, Abildskov J, Von Solms N, Galfre A, Brantuas P, Herri JM, Int. J. GreenH. Gas Con., 17, 397 (2013)
Zhou SD, Yu YS, Zhao MM, Wang SL, Zhang GZ, Energy Fuels, 28(7), 4694 (2014)
Zhou SD, Jiang K, Zhao YL, Chi YD, Wang SL, Zhang GZ, J. Chem. Eng. Data, 63(2), 389 (2018)
Yu YS, Xu CG, Li XS, J. Ind. Eng. Chem., 59, 64 (2018)
Mohammadi A, Manteghian M, Haghtalab A, Mohammadi AH, Rahmati-Abkenar M, Chem. Eng. J., 237, 387 (2014)
ZareNezhad B, Montazeri V, Petrol. Sci. Technol., 34, 37 (2016)
Choi JW, Chung JT, Kang YT, Energy, 78, 869 (2014)
Mohammadi M, Haghtalab A, Fakhroueian Z, J. Chem. Thermodyn., 96, 24 (2016)
Said S, Govindaraj V, Herri JM, Ouabbas Y, Khodja M, Belloum M, Nagarajan R, J. Nat. Gas Sci. Eng., 32, 95 (2016)
Renault-Crispo JS, Coulombe S, Servio P, Energy, 128, 414 (2017)
Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA, J. Membr. Sci., 401, 132 (2012)
Peng DY, Robinson DB, Ind. Eng. Chem., 15, 59 (1976)
Sabil KM, Duarte ARC, Zevenbergen J, Ahmad MM, Yusup S, Omar AA, Peters CJ, Int. J. GreenH. Gas Con., 4, 798 (2010)
Karami N, Rahimi M, Int. J. Heat Mass Transf., 55, 45 (2014)
Kars RL, Best RJ, Drinkenburg AAH, Chem. Eng. J., 17, 201 (1979)
Kluytmans JHJ, van Wachem BGM, Kuster BFM, Schouten JC, Chem. Eng. Sci., 58(20), 4719 (2003)
Kim JH, Jung CW, Kang YT, Int. J. Heat Mass Transf., 76, 484 (2014)
Jeong M, Lee JW, Lee SJ, Kang YT, Int. J. Heat Mass Transf., 108, 680 (2017)
Firoozabadi SR, Bonyadi M, Lashanizadegan A, J. Nat. Gas Sci. Eng., 59, 374 (2018)
Kyung D, Lee K, Kim H, Lee W, Int. J. GreenH. Gas Con., 20, 285 (2014)
Guo TM, Wu BH, Zhu YH, Fan SS, Chen GJ, J. Petrol. Sci. Eng., 41, 11 (2004)
Englezos P, Ind. Eng. Chem. Res., 32, 1251 (1993)
Chun MK, Lee H, Korean J. Chem. Eng., 13(6), 620 (1996)
Moridis GJ, Sloan ED, Energy Conv. Manag., 48(6), 1834 (2007)
Lee JW, Dotel P, Park J, Yoon JH, Korean J. Chem. Eng., 12, 2507 (2015)
Lee JW, Chun MK, Lee KM, Kim YJ, Lee H, Korean J. Chem. Eng., 19(4), 673 (2002)
Sloan ED, Ind. Eng. Chem. Res., 39, 3123 (2000)
Almenningen S, Gauteplass J, Fotland P, Aastveit GL, Barth T, Ersland G, Int. J. GreenH. Gas Con., 79, 272 (2018)
Mori T, Mori YH, Int. J. Refrig., 12, 259 (1989)
Inaba H, Int. J. Therm. Sci., 39, 991 (2000)
Sloan ED, Fleyfel F, Fluid Phase Equilib., 76, 123 (1992)
Pivezhani F, Roosta H, Dashti A, Mazloumi SH, Energy, 113, 215 (2016)
Kumar A, Sakpal T, Linga P, Kumar R, Fuel, 105, 664 (2013)
ZareNezhad B, Montazeri V, Energy Conv. Manag., 79, 289 (2014)
Wang XL, Dennis M, Chem. Eng. Sci., 155, 294 (2016)
Nguyen Ngoc N., Nguyen Anh V., Nguyen Khoi T., Rintoul Llew, Dang Liem X., Fuel, 185, 517 (2016)
Babu P, Chin WI, Kumar R, Linga P, Energy Procedia, 61, 1780 (2014)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 36(3), 1394 (2011)
Li XS, Xu CG, Chen ZY, Cai J, Int. J. Hydrog. Energy, 37(1), 720 (2012)
Herslund PJ, Thomsen K, Abildskov J, Von Solms N, Galfre A, Brantuas P, Herri JM, Int. J. GreenH. Gas Con., 17, 397 (2013)
Zhou SD, Yu YS, Zhao MM, Wang SL, Zhang GZ, Energy Fuels, 28(7), 4694 (2014)
Zhou SD, Jiang K, Zhao YL, Chi YD, Wang SL, Zhang GZ, J. Chem. Eng. Data, 63(2), 389 (2018)
Yu YS, Xu CG, Li XS, J. Ind. Eng. Chem., 59, 64 (2018)
Mohammadi A, Manteghian M, Haghtalab A, Mohammadi AH, Rahmati-Abkenar M, Chem. Eng. J., 237, 387 (2014)
ZareNezhad B, Montazeri V, Petrol. Sci. Technol., 34, 37 (2016)
Choi JW, Chung JT, Kang YT, Energy, 78, 869 (2014)
Mohammadi M, Haghtalab A, Fakhroueian Z, J. Chem. Thermodyn., 96, 24 (2016)
Said S, Govindaraj V, Herri JM, Ouabbas Y, Khodja M, Belloum M, Nagarajan R, J. Nat. Gas Sci. Eng., 32, 95 (2016)
Renault-Crispo JS, Coulombe S, Servio P, Energy, 128, 414 (2017)
Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA, J. Membr. Sci., 401, 132 (2012)
Peng DY, Robinson DB, Ind. Eng. Chem., 15, 59 (1976)
Sabil KM, Duarte ARC, Zevenbergen J, Ahmad MM, Yusup S, Omar AA, Peters CJ, Int. J. GreenH. Gas Con., 4, 798 (2010)
Karami N, Rahimi M, Int. J. Heat Mass Transf., 55, 45 (2014)
Kars RL, Best RJ, Drinkenburg AAH, Chem. Eng. J., 17, 201 (1979)
Kluytmans JHJ, van Wachem BGM, Kuster BFM, Schouten JC, Chem. Eng. Sci., 58(20), 4719 (2003)
Kim JH, Jung CW, Kang YT, Int. J. Heat Mass Transf., 76, 484 (2014)
Jeong M, Lee JW, Lee SJ, Kang YT, Int. J. Heat Mass Transf., 108, 680 (2017)
Firoozabadi SR, Bonyadi M, Lashanizadegan A, J. Nat. Gas Sci. Eng., 59, 374 (2018)