Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 22, 2019
Accepted August 28, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation of magnetic activated carbon-chitosan nanocomposite for crystal violet adsorption
Ferda Civan Cavusoglu
Seher Akan
Ezgi Aleyna Arı
Ezgi Cetinkaya
Elif Colak
Gamze Nur Dastan
Semina Deniz
Damla Erdem
Melda Koksal
Sevgi Korkmaz
Nursena Onsekiz
Betul Orucoglu
Didem Ozkaya
Hamdi Bugra Uslu
Caglanur Unal
Ogulcan Yildiz
Seyma Ozkara-Aydinoglu
and Sahika Sena Bayazit†
Cavusglu FC
Akan S
Ari EA
Cetinkaya E
Colak E
Dastan GN
Deniz S
Erdem D
Koksal M
Korkmaz S
Onsekiz N
Orucoglu B
Ozkaya D
Uslu HB
Ynal C
Yildinz O
Ozkara-Aydinoglu S
Bayazit SS
Engineering & Architecture Faculty, Chemical Engineering Department, Beykent University, 34396 Istanbul, Turkey
sahikasena@gmail.com
Korean Journal of Chemical Engineering, November 2019, 36(11), 1915-1921(7), 10.1007/s11814-019-0377-9
Download PDF
Abstract
Magnetic, cheap and versatile adsorbents were developed for crystal violet (CV) adsorption in this study. These adsorbents are magnetic activated carbon (AC-Fe3O4) and chitosan grafted magnetic activated carbon (Chitosan- AC-Fe3O4). Fe3O4 and chitosan were also used for adsorption. X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), zeta potential analysis and Fourier transform infrared spectroscopy (FTIR) methods were used for characterization of adsorbents. Adsorption parameters for CV were investigated. Raw chitosan and Fe3O4 were also used for CV adsorption to compare the results of composites. The chosen adsorption parameters are amount of adsorbent, contact time, initial CV concentration, and temperature. The equilibrium period was observed to be very short for chitosan and Fe3O4 nanoparticles. The adsorption efficiencies of these adsorbents are very low. AC-Fe3O4 and AC-Fe3O4-Chitosan nanoparticles reached equilibrium at 80min. The all adsorbent-CV systems followed pseudo second-order kinetic model. AC-Fe3O4 and AC-Fe3O4-Chitosan composites suited non-linear Freundlich isotherm for all temperatures (298, 308 and 318 K). Regeneration of adsorbents was also investigated. 1M of acetic acid and 0.1M of NaOH solutions were tested. Acetic acid solution desorbed CV better than NaOH solution at 6 hours.
References
Rai P, Gautam RK, Banerjee S, Rawat V, Chattopadhyaya MCC, J. Environ. Chem. Eng., 3(4), 2281 (2015)
Kumari HJ, Krishnamoorthy P, Arumugam TKK, Radhakrishnan S, Vasudevan D, Int. J. Biol. Macromol., 96, 324 (2017)
Xu B, Zheng H, Wang Y, An Y, Luo K, Zhao C, Xiang W, Int. J. Biol. Macromol., 112, 648 (2018)
Sellaoui L, Dotto GL, Peres EC, Benguerba Y, Lima EC, Lamine AB, Erto A, J. Mol. Liq., 248, 890 (2017)
Ma H, Pu SY, Hou YQ, Zhu RX, Zinchenko A, Chu W, Chem. Eng. J., 345, 556 (2018)
Huo Y, Wu H, Wang Z, Wang F, Liu Y, Feng Y, Zhao Y, Colloids Surf. A: Physicochem. Eng. Asp., 549, 174 (2018)
Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ju YHH, Ismadji S, J. Environ. Chem. Eng., 5(6), 5677 (2017)
Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Him NRN, Lau WJ, J. Environ. Chem. Eng., 6(2), 2803 (2018)
de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
Subramani SE, Thinakaran N, Process Saf. Environ. Protect., 106, 1 (2017)
Monash P, Pugazhenthi G, Adsorption, 15(4), 390 (2009)
Li G, Li H, Mi X, Zhao W, Korean J. Chem. Eng., 36(8), 1274 (2019)
Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, Korean J. Chem. Eng., 36(7), 1057 (2019)
Hossienzadeh K, Maleki A, Daraei H, Safari M, Pawar R, Lee SM, Korean J. Chem. Eng., 36(8), 1360 (2019)
Qu S, Wang J, Kong J, Yang P, Chen G, Talanta, 71(3), 1096 (2007)
Danalioglu ST, Bayazit SS, Kerkez Kuyumcu O, Salam MA, J. Mol. Liq., 240, 589 (2017)
Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR, Biotechnol. Res. Int., 2014, 705068 (2014)
Hu P, Kang L , Chang T, Yang F, Wang H, Zhang Y, Yang J, Wang K, Du J, Yang Z, J. Alloy. Compd., 728, 88 (2017)
Darwish MSA, Stibor I, J. Dispersion Sci. Technol., 37, 1793 (2016)
Lagergren S, Sven K, Vetenskademiens Handl., 24, 1 (1898)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Wan J, Tao T, Zhang Y, Liang X, Zhou A, Zhu C, Choi JW, Luo S, RSC Adv., 6(28), 23233 (2016)
Inyang HI, Onwawoma A, Bae S, Soil Tillage Res., 155, 124 (2016)
Largitte L, Pasquier R, Chem. Eng. Res. Des., 109, 495 (2016)
Langmuir I, J. Am. Chem. Soc., 40(9), 1361 (1918)
Freundlich H, Zeitschrift F{u}r Phys. Chemie, 57, 385 (1906)
Wei H, Han L, Tang Y, Ren J, Zhao Z, Jia L, J. Mater. Chem. B, 3(8), 1646 (2015)
Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
Chakraborty S, Chowdhury S, Das Saha P, Carbohydr. Polym., 86(4), 1533 (2011)
Tahir N, Bhatti HN, Iqbal M, Noreen S, Int. J. Biol. Macromol., 94, 210 (2017)
Kumari HJ, Krishnamoorthy P, Arumugam TKK, Radhakrishnan S, Vasudevan D, Int. J. Biol. Macromol., 96, 324 (2017)
Xu B, Zheng H, Wang Y, An Y, Luo K, Zhao C, Xiang W, Int. J. Biol. Macromol., 112, 648 (2018)
Sellaoui L, Dotto GL, Peres EC, Benguerba Y, Lima EC, Lamine AB, Erto A, J. Mol. Liq., 248, 890 (2017)
Ma H, Pu SY, Hou YQ, Zhu RX, Zinchenko A, Chu W, Chem. Eng. J., 345, 556 (2018)
Huo Y, Wu H, Wang Z, Wang F, Liu Y, Feng Y, Zhao Y, Colloids Surf. A: Physicochem. Eng. Asp., 549, 174 (2018)
Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ju YHH, Ismadji S, J. Environ. Chem. Eng., 5(6), 5677 (2017)
Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Him NRN, Lau WJ, J. Environ. Chem. Eng., 6(2), 2803 (2018)
de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
Subramani SE, Thinakaran N, Process Saf. Environ. Protect., 106, 1 (2017)
Monash P, Pugazhenthi G, Adsorption, 15(4), 390 (2009)
Li G, Li H, Mi X, Zhao W, Korean J. Chem. Eng., 36(8), 1274 (2019)
Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, Korean J. Chem. Eng., 36(7), 1057 (2019)
Hossienzadeh K, Maleki A, Daraei H, Safari M, Pawar R, Lee SM, Korean J. Chem. Eng., 36(8), 1360 (2019)
Qu S, Wang J, Kong J, Yang P, Chen G, Talanta, 71(3), 1096 (2007)
Danalioglu ST, Bayazit SS, Kerkez Kuyumcu O, Salam MA, J. Mol. Liq., 240, 589 (2017)
Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR, Biotechnol. Res. Int., 2014, 705068 (2014)
Hu P, Kang L , Chang T, Yang F, Wang H, Zhang Y, Yang J, Wang K, Du J, Yang Z, J. Alloy. Compd., 728, 88 (2017)
Darwish MSA, Stibor I, J. Dispersion Sci. Technol., 37, 1793 (2016)
Lagergren S, Sven K, Vetenskademiens Handl., 24, 1 (1898)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Wan J, Tao T, Zhang Y, Liang X, Zhou A, Zhu C, Choi JW, Luo S, RSC Adv., 6(28), 23233 (2016)
Inyang HI, Onwawoma A, Bae S, Soil Tillage Res., 155, 124 (2016)
Largitte L, Pasquier R, Chem. Eng. Res. Des., 109, 495 (2016)
Langmuir I, J. Am. Chem. Soc., 40(9), 1361 (1918)
Freundlich H, Zeitschrift F{u}r Phys. Chemie, 57, 385 (1906)
Wei H, Han L, Tang Y, Ren J, Zhao Z, Jia L, J. Mater. Chem. B, 3(8), 1646 (2015)
Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
Chakraborty S, Chowdhury S, Das Saha P, Carbohydr. Polym., 86(4), 1533 (2011)
Tahir N, Bhatti HN, Iqbal M, Noreen S, Int. J. Biol. Macromol., 94, 210 (2017)