ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 25, 2019
Accepted September 22, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate

Chemical Engineering Department, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
pr.gogate@ictmumbai.edu.in
Korean Journal of Chemical Engineering, December 2019, 36(12), 2000-2007(8), 10.1007/s11814-019-0390-z
downloadDownload PDF

Abstract

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate (SDBS) was investigated, focusing on establishing the best conditions for maximum degradation. The study involving different persulfate based oxidants, such as potassium persulfate (KPS), ammonium persulfate (NH3PS) and sodium persulfate (NaPS), revealed that the extent of degradation as 98.3, 82.2 and 68.2% was obtained for the use of KPS, NH3PS and NaPS, respectively. The study of the effect of SDBS concentration (25-100mg/L), oxidant loading (0-3 g/L) and power (140-350 W) established that degradation decreased with an increase in the operating parameter beyond the optimum condition. Under optimized conditions using potassium persulfate (KPS) as an oxidant, 51.6% and 98.3% degradation of 50mg/L SDBS solution was obtained by conventional and microwave assisted chemical oxidation approach, respectively, under optimized conditions of power, oxidant loading, volume and time maintained as 280W, 2 g/L, 250 mL and 28 min, respectively. Extending the conventional approach for 120min resulted in degradation of 92.5%, which establishes that microwave helps in reducing the treatment time significantly. Kinetic study revealed pseudo-first-order behavior for degradation of SDBS. Energy per order (EEO) for conventional and microwave assisted degradation was observed to be 840 and 317.33kWh/m3, respectively. Overall, microwave assisted persulfate induced degradation of SDBS has been established to be promising method giving rapid degradation and better economics.

References

Edser C, Focus Surfactants, 2018, 1 (2018)
Beltran-Heredia J, Sanchez-Martin J, Solera-Hernandez C, Chem. Eng. J., 153(1-3), 56 (2009)
Yuksel E, Sengil IA, Ozacar M, Chem. Eng. J., 152(2-3), 347 (2009)
Taffarel SR, Rubio J, Miner. Eng., 23(10), 771 (2010)
Sanchez M, Rivero MJ, Ortiz I, Appl. Catal. B: Environ., 101(3-4), 515 (2011)
Wu SH, Pendleton P, J. Colloid Interface Sci., 243(2), 306 (2001)
Ying GG, Environ. Int., 32, 417 (2006)
Bhandari PS, Gogate PR, J. Mol. Liq., 252, 495 (2018)
Gupta S, Pal A, Ghosh PK, Bandyopadhyay M, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 38, 381 (2003)
Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D, Water Res., 38, 3751 (2004)
Mungraya AK, Kumar P, J. Hazard. Mater., 160(2-3), 362 (2008)
Scott MJ, Jones MN, Biochim. Biophys. Acta, 1508, 235 (2000)
de Wolf W, Feijtel T, Chemosphere, 36, 1319 (1998)
Patterson DA, Metcalfe IS, Xiong F, Livingston AG, Ind. Eng. Chem. Res., 40(23), 5507 (2001)
Merrettig-Bruns U, Jelen E, Materials, 2, 181 (2009)
Adak A, Bandopadhyay M, Pal A, Colloids Surf. A: Physicochem. Eng. Asp., 254, 165 (2005)
Adak A, Bandopadhyay M, Pal A, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 40, 167 (2005)
Das Purakayastha P, Pal A, Bandyopadhyay M, Indian J. Chem. Technol., 12(3), 281 (2005)
Kong WP, Wang B, Ma HZ, Gu L, J. Hazard. Mater., 137(3), 1532 (2006)
Koparal AS, Onder E, Ogutveren UB, Desalination, 197(1-3), 262 (2006)
Abu-Hassan MA, Kim JK, Metcalfe IS, Mantzavinos D, Chemosphere, 62, 749 (2006)
Kimerle RA, Swisher RD, Water Res., 11, 31 (1977)
Hosseini F, Malekzadeh F, Amirmozafari N, Ghaemi N, Int. J. Environ. Sci. Technol., 4, 127 (2007)
Farzaneh H, Fereidon M, Noor A, Naser G, J. Biotechnol., 9, 55 (2010)
Azbar N, Yonar T, Kestioglu K, Chemosphere, 55, 35 (2004)
Alinsafi A, Khemis M, Pons MN, Leclerc JP, Yaacoubi A, Benhammou A, Nejmeddine A, Chem. Eng. Process., 44(4), 461 (2005)
Rios F, Olak-Kucharczyk M, Gmurek M, Ledakowicz S, Arch. Environ. Prot., 43, 20 (2017)
Zhang ZH, Deng YQ, Shen ML, Han WM, Chen ZL, Xu DP, Ji XT, Desalination, 249(3), 1022 (2009)
Banat IM, Nigam P, Singh D, Marchant R, Bioresour. Technol., 58(3), 217 (1996)
Patil NN, Shukla SR, J. Water Process. Eng., 7, 314 (2015)
Gogate PR. Pandit AB, Adv. Environ. Res., 8, 501 (2004)
Ikehata K, El-Din MG, Ozone Sci. Eng., 26, 327 (2004)
Glaze WH, Kang JW, Chapin DH, Ozone Sci. Eng. J. Int. Ozone Assoc., 9, 335 (1987)
Nascimento UM, Azevedo EB, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 48, 1056 (2013)
Ashokkumar M, Niblett T, Tantiongco L, Grieser F, Aust. J. Chem., 56, 1045 (2003)
Dehghani MH, Zarei A, Yousefi M, MethodsX, 6, 805 (2019)
Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
Perreux L, Loupy A, Tetrahedron, 57, 9199 (2001)
Gawande MB, Shelke SN, Zboril R, Varma RS, Accounts Chem. Res., 47, 1338 (2014)
Qi CD, Liu XT, Lin CY, Zhang XH, Ma J, Tan HB, Ye W, Chem. Eng. J., 249, 6 (2014)
Kim Y, Ahn J, Int. Biodeterior. Biodegrad., 95, 208 (2014)
Jacob J, Chia LH, Boey FY, J. Mater. Sci., 30(21), 5321 (1995)
Zhang Z, Deng Y, Shen M, Han W, Chen Z, Xu D, Ji X, Water Sci. Technol., 63, 424 (2011)
Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL, Crit. Rev. Environ. Sci. Technol., 40, 55 (2010)
Rodriguez S, Vasquez L, Costa D, Romero A, Santos A, Chemosphere, 101, 86 (2014)
Ji Y, Fan Y, Liu K, Kong D, Lu J, Water Res., 87, 1 (2015)
Zhang YQ, Du XZ, Huang WL, Chinese Chem. Lett., 22, 2358 (2011)
Nuchter M, Muller U, Ondruschka B, Tied A, Lautenschlager W, Chem. Eng. Technol., 26(12), 1207 (2003)
Langa F, de la Cruz P, de la Hoz A, Diaz-Ortiz A, Diez-Barra E, Contemp. Org. Synth., 4, 373 (1997)
Matzek LW, Carter KE, Chemosphere, 151, 178 (2016)
Veksha A, Pandya P, Hill JM, J. Environ. Chem. Eng., 3, 1452 (2015)
de la Hoz A, Diaz-Ortiz A, Moreno A, J. Microw. Power Electromagn Energy, 41, 44 (2007)
Jachuck RJ, Selvaraj DK, Varma RS, Green Chem., 8, 29 (2006)
Mendez-Diaz J, Sanchez-Polo M, Rivera-Utrila J, Bautista-Toledo MI, Water Res., 43, 1621 (2009)
Rivera-Utrilla J, Mendez-Diaz J, Sanchez-Polo M, Ferro-Garcia MA, Baustista-Toledo I, Water Res., 40, 1717 (2006)
Deng Y, Ezyske CM, Water Res., 45, 6189 (2011)
Mendez-Diaz J, Sanchez-Polo M, Rivera-Utrilla J, Canonica S, von Gunten U, Chem. Eng. J., 163(3), 300 (2010)
Zhou DN, Zhang H, Chen L, J. Chem. Technol. Biotechnol., 90(5), 775 (2015)
Liang CJ, Su HW, Ind. Eng. Chem. Res., 48(11), 5558 (2009)
Liu YQ, He XX, Fu YS, Dionysiou DD, J. Hazard. Mater., 305, 229 (2016)
Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R, Environ. Sci. Technol., 39, 2383 (2005)
Liu CS, Higgins CP, Wang F, Shih K, Sep. Purif. Technol., 91, 46 (2012)
Bo L, Quan X, Chen S, Zhao H, Zhao Y, Water Res., 40, 3061 (2006)
Tierney J, Westman J, Tetrahedron, 57, 9225 (2001)
Remya N, Lin JG, Chem. Eng. J., 166(3), 797 (2011)
Daneshvar N, Aleboyeh A, Khataee AR, Chemosphere, 59, 761 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로