ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 16, 2019
Accepted September 2, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A combined experimental and theoretical investigation of the adsorption of 4-Nitrophenol on activated biocarbon using DFT method

Department of Chemistry, Nagaland University, Lumami-798627, India
dipaksinha@gmail.com
Korean Journal of Chemical Engineering, December 2019, 36(12), 2023-2034(12), 10.1007/s11814-019-0382-z
downloadDownload PDF

Abstract

Porous activated biocarbon from Ravenna grass was utilized as an adsorbent for the removal of 4-Nitrophenol from aqueous solution. Chemical activation process using potassium hydroxide was adopted for the activated biocarbon preparation. The essential features of the prepared adsorbent represented by BET surface area, pore volume and pHZPC were 919m2g-1, 0.324 cm3g-1 and 8.1 respectively. SEM, FTIR, XRD and TGA analysis revealed the microcrystallite and porous structure of the synthesized biocarbon with abundant functional groups and high thermal stability. Batch adsorption tests were conducted for 4-Nitrophenol adsorption, and the optimum adsorbent dose, pH, initial 4-Nitrophenol concentration and contact time were found to be 0.5 g, 7, 400mgL-1 and 40minutes, respectively. The equilibrium isotherm study revealed the suitability of the Langmuir isotherm with a maximum adsorption capacity of 50.89mg/g. The pseudo-second-order kinetic model well represented the adsorption kinetics data, while thermodynamics study indicated the spontaneity (ΔG<0) and endothermic nature (ΔH>0) of the adsorption of 4-Nitrophenol. Density functional theory (DFT) calculations performed at the B3LYP level indicated that the interaction of 4-Nitrophenol with pristine and functionalized activated biocarbon is favorable.

References

Rincon-Silva NG, Moreno-Pirajan JC, Giraldo L, Adsorption, 22, 33 (2016)
Ipek I, Kabay N, Yuksel M, J. Water Process Eng., 16, 206 (2017)
Karri RR, Sahu JN, Jayakumar NS, J. Taiwan Inst. Chem. Eng., 80, 472 (2017)
Z-Flores E, Abatal M, Bassam A, Trujillo L, Juarez-Smith P, El Hamzaoui Y, J. Clean Prod., 161, 860 (2017)
Sukan A, Sargin S, J. Biomater. Nanobiotechnol., 4, 300 (2013)
Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N, Curr. Pollut. Reports, 2, 157 (2016)
Yagmur E, Turkoglu S, Banford A, Aktas Z, J. Clean Prod., 149, 1109 (2017)
Nadavala SK, Man HC, Woo H, BioResources, 9, 5155 (2014)
Jaradat AQ, Gharaibeh S, Abu Irjei M, Water Environ. J., 32, 134 (2018)
Jiang Y, Ni G, Zhao G, Meng Y, Li J, Wang X, Plasma Process Polym., 10, 353 (2013)
Khazaali F, Kargari A, Rokhsaran M, Desalin. Water Treat., 52, 7543 (2013)
Wu Y, Tian G, Tan H, Fu X, Desalin. Water Treat., 51, 37 (2013)
Rabaaoui N, Saad MEK, Moussaoui Y, Allagui MS, Bedoui A, Elaloui E, J. Hazard. Mater., 250-251, 447 (2013)
Tian M, Thind SS, Dondapati JS, Li X, Chen A, Chemosphere, 209, 182 (2018)
Peings V, Frayret J, Pigot T, J. Environ. Manage., 157, 287 (2015)
Song Y, Jiang J, Ma J, Pang SY, Liu YZ, Yang Y, Luo CW, Zhang JQ, Gu J, Qin W, Environ. Sci. Technol., 49, 11764 (2015)
Tu YT, Xiong Y, Tian SH, Kong LJ, Descorme C, J. Hazard. Mater., 276, 88 (2014)
Kuosa M, Kallas J, Hakkinen A, J. Environ. Chem. Eng., 3, 325 (2015)
Madani M, Aliabadi M, Nasernejad B, Abdulrahman RK, Kilic MY, Kestioglu K, Desalin. Water Treat., 53, 2031 (2015)
Karci A, Arslan-Alaton I, Olmez-Hanci T, Bekbolet M, Chem. Eng. J., 224, 4 (2013)
Moussavi G, Ghodrati S, Mohseni-Bandpei A, J. Biotechnol., 184, 111 (2014)
Jalayeri H, Ardejani FD, Marandi R, Rafiee pur S, Arab. J. Geosci., 6, 3847 (2013)
Xu DY, Yang Z, Chemosphere, 92, 391 (2013)
Torres JA, Chagas PMB, Silva MC, Dos Santos CD, Correa AD, Environ. Technol., 37, 1288 (2016)
Aber S, Khataee A, Sheydaei M, Bioresour. Technol., 100(24), 6586 (2009)
Fan H, Shi L, Shen H, Xie K, RSC Adv., 6, 109983 (2016)
Li B, Energy Environ. Sci., 9, 102 (2016)
Ngaosuwan K, Goodwin JG, Prasertdham P, Renew. Energy, 86, 262 (2016)
Mullick A, Moulik S, Bhattacharjee S, Indian Chem. Eng., 60, 58 (2017)
You N, Li J, Fan H, Shen H, J. Adv. Res., 15, 77 (2018)
Selvaraju G, Kartini N, Bakar A, J. Clean Prod., 141, 989 (2016)
Kumar A, Jena HM, J. Clean Prod., 137, 1246 (2016)
Dhorabe PT, Lataye DH, Ingole RS, Water Sci. Technol., 73, 955 (2016)
Liu X, Wang F, Bai S, Water Sci. Technol., 72, 2229 (2015)
Dhorabe PT, Lataye DH, Ingole RS, J. Hazardous, Toxic, Radioact. Waste, 21, 401601 (2017)
Cam LM, Van Khu L, Ha NN, J. Mol. Model., 19, 4395 (2013)
Shen FH, Liu J, Zhang Z, Dong YC, Gu CK, Fuel Process. Technol., 171, 258 (2018)
Padak B, Brunetti M, Lewis A, Wilcox J, Environ. Prog., 25, 319 (2006)
Radovic LR, Carbon N. Y., 43, 907 (2005)
Cortes-Arriagada D, Sanhueza L, Santander-Nelli M, J. Mol. Model., 19, 3569 (2013)
Liu J, Qu WQ, Joo SW, Zheng CG, Chem. Eng. J., 184, 163 (2012)
Babic BM, Milonjic SK, Polovina MJ, Kaludierovic BV, Carbon N. Y., 37, 477 (1999)
Ho YS, McKay G, Wase DAJ, Forster CF, Adsorpt. Sci. Technol., 18, 639 (2000)
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, et al., Gaussian Inc., Wallingford CT, Wallingford CT (2009).
Martinez ML, Torres MM, Guzman CA, Maestri DM, Ind. Crop. Prod., 23, 23 (2006)
Gurten II, Ozmak M, Yagmur E, Aktas Z, Biomass Bioenergy, 37, 73 (2012)
Matos J, Nahas C, Rojas L, Rosales M, J. Hazard. Mater., 196, 360 (2011)
Angin D, Fuel, 115, 804 (2014)
Li S, Han K, Li J, Li M, Lu C, Microporous Mesoporous Mater., 243, 291 (2017)
Diya’uddeen BH, Mohammed IA, Ahmed A, Jibril BY, Agric. Eng. Int., 10, 1 (2008)
Bartram J, Ballance R, Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, 1st Ed. (E & FN Spon, 1996).
Soni H, Padmaja P, J. Porous Mat., 21, 275 (2014)
Moazed H, Nasab SB, J. Mol. Liq., 211, 448 (2015)
Balarak D, Int. J. ChemTech Res., 9, 681 (2016)
Muluh SN, Ghogomu JN, Alongamo AAB, Ajifack DL, Int. J. Adv. Eng. Res. Technol., 5, 610 (2017)
Shirzad-Siboni M, Jafari SJ, Farrokhi M, Yang JK, Environ. Eng. Res., 18, 247 (2013)
Kavitha D, J. Environ. Biotechnol. Res., 3, 24 (2016)
Sudhakar P, Mall ID, Srivastava VC, Desalin. Water Treat., 57, 12375 (2016)
Ely A, Baudu M, Kankou MOSO, Basly JP, Chem. Eng. J., 178, 168 (2011)
Rawash ESA, Glob. J. Environ. Sci. Manag., 2, 11 (2016)
Mahmoud ME, Nabil GM, J. Mol. Liq., 240, 280 (2017)
Ahmed MJ, Theydan SK, Desalin. Water Treat., 55, 522 (2015)
Sismanoglu T, Pura S, Colloids Surf. A: Physicochem. Eng. Asp., 180, 1 (2001)
Zhang B, Li F, Wu T, Sun D, Li Y, Colloids Surf. A: Physicochem. Eng. Asp., 464, 78 (2015)
Rincon-Silva NG, Moreno-Pirajan JC, Giraldo LG, J. Chem., 2015, 1 (2014)
Al-Asheh S, Fawzi B, Asmahan M, Environ. Geol., 45, 1109 (2004)
Wu Z, Yuan X, Zhong H, Wang H, Zeng G, Nat. Publ. Gr., 6, 25638 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로