ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 30, 2019
Accepted October 8, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties

Department of Chemical Engineering, Hanyang University, Seoul 04761, Korea
Korean Journal of Chemical Engineering, December 2019, 36(12), 2118-2124(7), 10.1007/s11814-019-0401-0
downloadDownload PDF

Abstract

ZnO nanorods were prepared through a sol-gel process by adding various amounts of water at low temperature and atmospheric pressure conditions for application as a photocatalyst. The 1-D ZnO nanostructures can overcome fast recombination of photogenerated electrons and holes that inhibits photocatalytic efficiency. X-ray diffractometer and transmission electron microscopy measurements confirmed that the (002)/(100) intensity ratio increased from 0.83 to 1.34 and the morphology of the ZnO nanoparticles was changed from a spherical shape to nanorods with the addition of water. UV-vis spectroscopy showed a red shift from 360 nm to 371 nm, which indicates a decrease of the band gap energy. PL measurements of the ZnO nanorods showed a 103 times improvement of the NBE/DLE intensity ratio compared to the ZnO nanospheres. When the photocatalytic efficiency of the ZnO nanoparticles was estimated for the degradation of methylene blue dye under irradiation of UV light, the photocatalytic kinetic constant increased from 0.067 min-1 to 0.481min-1. As a result, longer ZnO nanorods showed better photocatalytic performance.

References

Wang J, Chen R, Xia Y, Wang G, Zhao H, Xiang L, Komarneni S, Ceram. Int., 43, 1870 (2017)
Mishra J, Jha M, Kaur N, Ganguli AK, Mater. Res. Bull., 102, 311 (2018)
Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
Chang CJ, Hsu MH, Weng YC, Tsay CY, Lin CK, Thin Solid Films, 528, 167 (2013)
Di TM, Zhu BC, Zhang J, Cheng B, Yu JG, Appl. Surf. Sci., 389, 775 (2016)
Mao LQ, Liu H, Liu S, Ba QQ, Wang H, Gao L, Li XY, Huang CP, Chen W, Mater. Res. Bull., 93, 9 (2017)
Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW, J. Environ. Manage., 198, 78 (2017)
Singh R, Verma K, Patyal A, Sharma I, Barman PB, Sharma D, Solid State Sci., 89, 1 (2019)
Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424 (2015)
Weng B, Yang MQ, Zhang N, Xu YJ, J. Mater. Chem. A, 2, 9380 (2014)
Raji R, Gopchandran KG, J. Phys. Chem. Solids, 113, 39 (2018)
Huang N, Shu J, Wang Z, Chen M, Ren C, Zhang W, J. Alloy. Compd., 648, 919 (2015)
Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R, Sci. Rep., 4, 4596 (2014)
Liu Z, Zhao ZG, Miyauchi M, J. Phys. Chem. C, 113, 17132 (2009)
Kato S, Hirano Y, Iwata M, Sano T, Takeuchi K, Matsuzawa S, Appl. Catal. B: Environ., 57(2), 109 (2005)
Zhang J, Sun L, Pan H, Liao C, Yan C, New J. Chem., 26, 33 (2002)
Gao PX, Wang ZL, J. Phys. Chem. B, 108(23), 7534 (2004)
Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
Liu R, Vertegel AA, Bohannan EW, Sorenson TA, Switzer JA, Chem. Mater., 13, 508 (2001)
Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH, Appl. Phys. Lett., 81, 3046 (2002)
Cheng-Liang H, Shoou-Jinn C, Hui-Chuan H, Yan-Ru L, Chorng-Jye H, Yung-Kuan T, Chen I, IEEE T. Nanotechnology, 4, 649 (2005)
Yan S, Wan L, Li Z, Zou Z, Chem. Commun., 47, 5632 (2011)
Jijun Q, Xiaomin L, Weizhen H, Park SJ, Kim HK, Han YH, Lee JH, Kim YD, Nanotechnology, 20, 155603 (2009)
Banerjee P, Chakrabarti S, Maitra S, Dutta BK, Ultrason. Sonochem., 19, 85 (2012)
Jeong Y, Kang JY, Kim I, Jeong H, Park JK, Park JH, Jung JC, Korean J. Chem. Eng., 33(1), 114 (2016)
Cheng B, Shi WS, Russell-Tanner JM, Zhang L, Samulski ET, Inorg. Chem., 45(3), 1208 (2006)
Jung HJ, Lee S, Choi HC, Choi MY, Solid State Sci., 21, 26 (2013)
Wang HH, Xie CS, Zeng DW, J. Cryst. Growth, 277(1-4), 372 (2005)
Chen Y, Zhao H, Liu B, Yang HQ, Appl. Catal. B: Environ., 163, 189 (2015)
Frederik CK, Yi T, Ralf T, Jens WA, Nanotechnology, 19, 424013 (2008)
Boucle J, Snaith HJ, Greenham NC, J. Phys. Chem. C, 114, 3664 (2010)
Hu JQ, Li Q, Wong NB, Lee CS, Lee ST, Chem. Mater., 14, 1216 (2002)
Kundu S, Sain S, Satpati B, Bhattacharyya SR, Pradhan SK, RSC Adv., 5, 23101 (2015)
Mclaren A, Valdes-Solis T, Li GQ, Tsang SC, J. Am. Chem. Soc., 131(35), 12540 (2009)
Colak H, Karakose E, Kartopu G, J. Mater. Sci-Mater. El., 29, 11964 (2018)
Lin YH, Wang DJ, Zhao QD, Yang M, Zhang QL, J. Phys. Chem. B, 108(10), 3202 (2004)
Seow ZLS, Wong ASW, Thavasi V, Jose R, Ramakrishna S, Ho GW, Nanotechnology, 20, 045604 (2008)
Mohajerani MS, Lak A, Simchi A, J. Alloy. Compd., 485, 616 (2009)
Shang TM, Sun JH, Zhou QF, Guan MY, Cryst. Res. Technol., 42, 1002 (2007)
Yang L, May PW, Yin L, Scott TB, Nanotechnology, 18, 215602 (2007)
Sun JC, Bian JM, Liang HW, Zhao JZ, Hu LZ, Zhao ZW, Liu WF, Du GT, Appl. Surf. Sci., 253(11), 5161 (2007)
Liu Y, Yan X, Kang Z, Li Y, Shen Y, Sun Y, Wang L, Zhang Y, Sci. Rep., 6, 29907 (2016)
Choi K, Kang T, Oh SG, Mater. Lett., 75, 240 (2012)
Li QW, Bian JM, Sun JC, Wang JW, Luo YM, Sun KT, Yu DQ, Appl. Surf. Sci., 256(6), 1698 (2010)
Gupta J, Barick KC, Bahadur D, J. Alloy. Compd., 509, 6725 (2011)
Rouhi J, Alimanesh M, Dalvand R, Ooi CHR, Mahmud S, Mahmood MR, Ceram. Int., 40, 11193 (2014)
Vanalakar SA, Mali SS, Suryawanshi MP, Tarwal NL, Jadhav PR, et al., Opt. Mater., 37, 766 (2014)
Ong CB, Ng LY, Mohammad AW, Renew. Sust. Energ. Rev., 81, 536 (2018)
He G, Huang B, Lin Z, Yang W, He Q, Li L, Crystals, 8, 152 (2018)
Chen X, Wu Z, Liu D, Gao Z, Nanoscale Res. Lett., 12, 143 (2017)
Yang LY, Dong SY, Sun JH, Feng JL, Wu QH, Sun SP, J. Hazard. Mater., 179(1-3), 438 (2010)
Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM, Inorg. Chem., 46(17), 6980 (2007)
Leelavathi A, Madras G, Ravishankar N, Phys. Chem. Chem. Phys., 15, 10795 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로