ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 8, 2019
Accepted October 1, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rapid and reusable detection of hydrogen peroxide using polyurethane scaffold incorporated with cerium oxide nanoparticles

Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
bskim@chungbuk.ac.kr
Korean Journal of Chemical Engineering, December 2019, 36(12), 2143-2152(10), 10.1007/s11814-019-0399-3
downloadDownload PDF

Abstract

We report a novel approach to using a polyurethane scaffold incorporated with cerium oxide nanoparticles as an alternative to the natural enzyme horseradish peroxidase for rapid and reusable detection of hydrogen peroxide. After the preparation of polyurethane from soybean oil and malic acid, cerium or iron oxide nanoparticles were synthesized and incorporated into the polyurethane scaffold by ultrasonic treatment. Formation of nanoparticles was characterized using Fourier transform infrared, transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Iron oxide nanoparticles (FeONPs) with an average size of 50 nm were not uniformly integrated; however, spherical cerium oxide nanoparticles (CeONPs) with an average size of 14 nm were easily incorporated into the polyurethane scaffold. The CeONP-incorporated polyurethane scaffold was highly responsive (<10 s) to H2O2, with a limit of detection of 3.18 μM, and was reusable for at least ten cycles without significant loss of detection activity. However, the response time of CeONP solution was more than 5min. Both FeONP solution and FeONP incorporated polyurethane scaffold were poor at detecting H2O2.

References

Chen W, Cai S, Ren QQ, Wen W, Zhao YD, Analyst, 137, 49 (2012)
Senthamizhan A, Balusamy B, Aytac Z, Uyar T, Anal. Bioanal. Chem., 408, 1357 (2016)
Zhang P, Wang Y, Yin Y, Sensors, 16, 1124 (2016)
Naik AN, Patra S, Kanekar AS, Sen D, Ramagiri SV, Bellare JR, Mazumder S, Gos A, Sens. Actuators B-Chem., 255, 605 (2018)
Dickinson BC, Tang Y, Chang Z, Chang CJ, Chem. Biol., 18, 943 (2011)
Cai D, Song M, J. Mater. Chem., 20, 7906 (2010)
Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ, Chem. Commun., 47, 11939 (2011)
Liu M, Liu R, Chen W, Biosens. Bioelectron., 45, 206 (2013)
Wang N, Duan J, Shi W, Zhai X, Guan F, Yang L, Hou B, Microchim. Acta, 185, 417 (2018)
Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E, Sci. Rep., 7, 4636 (2017)
Charbgoo F, Ramezani M, Darroudi M, Biosens. Bioelectron., 96, 33 (2017)
Khodadust R, Unsoy G, Yalcın S, Gunduz G, Gunduz U, J. Nanopart. Res., 15, 1488 (2013)
Aghazadeh M, Karimzadeh I, Maragheh MG, Ganjali MR, Korean J. Chem. Eng., 35(6), 1341 (2018)
Gao L, Fan K, Yan X, Theranostics, 7, 3207 (2017)
Wei H, Wang E, Anal. Chem., 80, 2250 (2008)
Liu Q, Zhang L, Li H, Jia Q, Jiang Y, Yang Y, Zhu R, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 55, 193 (2015)
Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB, J. Hazard. Mater., 167(1-3), 560 (2009)
Mishra A, Ahmad R, Perwez M, Sardar M, BioNanoScience, 6, 93 (2016)
Yu F, Huang Y, Cole AJ, Yang VC, Biomaterials, 30, 4716 (2009)
Ornatska M, Sharpe E, Andreescu D, Andreescu S, Anal. Chem., 83, 4273 (2011)
Kumar D, Talreja N, Korean J. Chem. Eng., 36, 126 (2018)
Saha P, Kim BS, J. Polym. Environ., 27, 2001 (2019)
Guo R, Wang Y, Yu S, Zhu W, Zheng F, Liu W, Zhang D, Wang J, RSC Adv., 6, 59939 (2016)
Song JY, Kwon EY, Kim BS, Korean J. Chem. Eng., 29(12), 1771 (2012)
Poddar MK, Vishwakarma K, Moholkar VS, Korean J. Chem. Eng., 36(5), 828 (2019)
Li Y, Sun XS, J. Am. Oil Chem. Soc., 91, 1425 (2014)
Miao SD, Zhang SP, Su ZG, Wang P, J. Polym. Sci. A: Polym. Chem., 48(1), 243 (2010)
Li Z, Zhang RW, Moon KS, Liu Y, Hansen K, Le TR, Wong CP, Adv. Funct. Mater., 23(11), 1459 (2013)
Narine SS, Kong X, Bouzidi L, Sporns P, J. Am. Oil Chem. Soc., 84, 55 (2007)
Choudhury B, Chetri P, Choudhury A, J. Exp. Nanosci., 10, 103 (2015)
Breitwieser M, Klose C, Hartmann A, Buchler A, Klingele M, Vierrath S, Zengerle R, Thiele S, Adv. Eng. Mater., 7, 160210 (2017)
Perez JM, Asati A, Nath S, Kaittanis C, Small, 4, 552 (2008)
Baldim V, Bedioui F, Mignet N, Margaill I, Berret JF, Nanoscale, 10, 6971 (2018)
Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, Basu T, Colloids Surf. B: Biointerfaces, 147, 45 (2016)
Cheng H, Lin S, Muhammad F, Lin YW, Wei H, ACS Sensors, 11, 1336 (2016)
Wang N, Sun J, Chen L, Fan H, Ai S, Microchim. Acta, 182, 1733 (2015)
Liu Q, Ding Y, Yang Y, Zhang L, Sun L, Chen P, Gao C, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 59, 445 (2016)
Ansari AA, Solanki PR, Malhotra BD, J. Biotechnol., 142, 179 (2009)
Roy A, Sahoo R, Ray C, Dutta S, Pal T, RSC Adv., 6, 32308 (2016)
Lee JW, Jeon HJ, Shin HJ, Kang JK, Chem. Commun., 48, 422 (2012)
Li D, Luo L, Pang Z, Chen X, Cai Y, Wei Q, RSC Adv., 4, 3857 (2014)
Teepoo S, Dawan P, Barnthip N, Biosensors, 7, 47 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로