Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2018
Accepted December 12, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Phenolic compound extraction from spent coffee grounds for antioxidant recovery
School of Chemical and Material Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk 27469, Korea
b.h.park@ut.ac.kr
Korean Journal of Chemical Engineering, February 2019, 36(2), 186-190(5), 10.1007/s11814-018-0208-4
Download PDF
Abstract
As the popularity of coffee beverage increases, an upsurge in the amount of solid residue, known as spent coffee ground (SCG), is inevitable. Currently, SCG is disposed of in the form of solid waste. However, there is a considerable amount of some valuable compounds including phenolic compounds in SCG. In this work, SCG was adopted as a natural antioxidant source for recovering phenolic compounds by an extraction method. An aqueous ethanol solvent (30% v/v) was used at different conditions of temperature, extraction time, and liquid/solid ratio. The amounts of phenolic compounds were analyzed by the well-known Folin-Ciocalteu method, and values were expressed as the weight of gallic acid equivalent (GAE). The highest extraction yield (87.3%) was reported at the highs of process variables; temperature=60 °C, extraction time=150 min, and liquid/solid ratio=50mL/g, based on a full factorial experimental design. The statistical Student’s t-test applied to the three operating factors revealed that temperature and liquid/solid ratio are more significant than the extraction time. A correlation equation was proposed to quantitatively analyze the effect of the factors on the reduction yield which could be further used to design and optimize the extraction process.
References
ICO, International Coffee Organization, www.ico.org (accessed May 25 2018).
Bertrand B, Guyot B, Anthony P, Lashermes P, Theor. Appl. Genet., 107, 378 (2003)
Clarke R, Vitzhum OG, Coffee: Recent Developments, Blackwell Science Ltd., Oxford UK (2001).
Cruz R, Cardoso MM, Fernandes L, Oliveira M, Mendes E, Baptista P, Morais S, Casal S, J. Agric. Food Chem., 60, 7777 (2012)
Silva MA, Nebra SA, Silva MJM, Sanchez CG, Biomass Bioenerg., 14(5-6), 457 (1998)
Leifa F, Pandey A, Soccol CR, J. Basic Microbiol., 40, 187 (2000)
Franca AS, Oliveira LS, Ferreira ME, Desalination, 249(1), 267 (2009)
Tokimoto T, Kawasaki N, Nakamura T, Akutagawa J, Tanada S, J. Colloid Interface Sci., 281(1), 56 (2005)
Utomo HD, Hunter KA, Environ. Technol., 27, 25 (2006)
Leifa F, Pandey A, Soccol CR, Braz. Arch. Biol. Technol., 44, 205 (2001)
Cruz R, Baptista P, Cunha S, Pereira JA, Casal S, Molecules, 17, 1535 (2012)
Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA, Appl. Energy, 92, 763 (2012)
Oliveira LS, Franca AS, Camargos RRS, Ferraz VP, Bioresour. Technol., 99(8), 3244 (2008)
Al-Hamamre Z, Foerster S, Hartmann F, Kroger M, Kaltschmitt M, Fuel, 96(1), 70 (2012)
Campos-Vega R, Loarca-Pina G, Vergara-Castaneda H, Oomach BD, Trends Food Sci. Technol., 45, 24 (2015)
Esquivel P, Jimenez VM, Food Res. Int., 46, 488 (2012)
Hegde P, Agrawal P, Gupta PK, J. Environ. Res. Develop., 10, 547 (2016)
Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB, Nutrients, 6, 6020 (2014)
Clifford MN, Food Chem., 4, 63 (1979)
Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
Vuksanovic J, Kijevcanin ML, Radovic IR, Korean J. Chem. Eng., 35(7), 1477 (2018)
Mojzer EB, Hrncic MK, Skerget M, Knez Z, Bren U, Molecules, 21, 901 (2016)
Mussatto SI, Ballesteros LF, Martins S, Teixeira JA, Sep. Purif. Technol., 83, 173 (2011)
Zuorro A, Lavecchia R, J. Clean Prod., 34, 49 (2012)
Pavlovic MD, Buntic AV, Siler-Marinkovic SS, Dimitrijevic-Brankovic SI, Sep. Purif. Technol., 118, 503 (2013)
Singleton VL, Rossi JA, Am. J. Enol. Vitic., 16, 144 (1965)
Agbor GA, Vinson JA, Donnelly PE, Int. J. Food Sci. Nutr. Diet., 3, 147 (2014)
Ramalakshmi K, Rao LJM, Takano-Ishikawa Y, Goto M, Food Chem., 115, 79 (2009)
Anderson M, Whitcomb P, “DOE Simplified: Practical Tools for Effective Experimentation,” 3rd Ed., CRC Press (2015).
Mee R, “A Comprehensive Guide to Factorial Two-Level Experimentation”, Springer (2009).
Bertrand B, Guyot B, Anthony P, Lashermes P, Theor. Appl. Genet., 107, 378 (2003)
Clarke R, Vitzhum OG, Coffee: Recent Developments, Blackwell Science Ltd., Oxford UK (2001).
Cruz R, Cardoso MM, Fernandes L, Oliveira M, Mendes E, Baptista P, Morais S, Casal S, J. Agric. Food Chem., 60, 7777 (2012)
Silva MA, Nebra SA, Silva MJM, Sanchez CG, Biomass Bioenerg., 14(5-6), 457 (1998)
Leifa F, Pandey A, Soccol CR, J. Basic Microbiol., 40, 187 (2000)
Franca AS, Oliveira LS, Ferreira ME, Desalination, 249(1), 267 (2009)
Tokimoto T, Kawasaki N, Nakamura T, Akutagawa J, Tanada S, J. Colloid Interface Sci., 281(1), 56 (2005)
Utomo HD, Hunter KA, Environ. Technol., 27, 25 (2006)
Leifa F, Pandey A, Soccol CR, Braz. Arch. Biol. Technol., 44, 205 (2001)
Cruz R, Baptista P, Cunha S, Pereira JA, Casal S, Molecules, 17, 1535 (2012)
Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA, Appl. Energy, 92, 763 (2012)
Oliveira LS, Franca AS, Camargos RRS, Ferraz VP, Bioresour. Technol., 99(8), 3244 (2008)
Al-Hamamre Z, Foerster S, Hartmann F, Kroger M, Kaltschmitt M, Fuel, 96(1), 70 (2012)
Campos-Vega R, Loarca-Pina G, Vergara-Castaneda H, Oomach BD, Trends Food Sci. Technol., 45, 24 (2015)
Esquivel P, Jimenez VM, Food Res. Int., 46, 488 (2012)
Hegde P, Agrawal P, Gupta PK, J. Environ. Res. Develop., 10, 547 (2016)
Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB, Nutrients, 6, 6020 (2014)
Clifford MN, Food Chem., 4, 63 (1979)
Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
Vuksanovic J, Kijevcanin ML, Radovic IR, Korean J. Chem. Eng., 35(7), 1477 (2018)
Mojzer EB, Hrncic MK, Skerget M, Knez Z, Bren U, Molecules, 21, 901 (2016)
Mussatto SI, Ballesteros LF, Martins S, Teixeira JA, Sep. Purif. Technol., 83, 173 (2011)
Zuorro A, Lavecchia R, J. Clean Prod., 34, 49 (2012)
Pavlovic MD, Buntic AV, Siler-Marinkovic SS, Dimitrijevic-Brankovic SI, Sep. Purif. Technol., 118, 503 (2013)
Singleton VL, Rossi JA, Am. J. Enol. Vitic., 16, 144 (1965)
Agbor GA, Vinson JA, Donnelly PE, Int. J. Food Sci. Nutr. Diet., 3, 147 (2014)
Ramalakshmi K, Rao LJM, Takano-Ishikawa Y, Goto M, Food Chem., 115, 79 (2009)
Anderson M, Whitcomb P, “DOE Simplified: Practical Tools for Effective Experimentation,” 3rd Ed., CRC Press (2015).
Mee R, “A Comprehensive Guide to Factorial Two-Level Experimentation”, Springer (2009).