Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 1, 2018
Accepted November 14, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
In situ electrochemical and mechanical accelerated stress tests of a gas diffusion layer for proton exchange membrane fuel cells
1Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea 2Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Korea 3Fuel Cell Technology Development Team, Eco Technology Center, Hyundai & Kia Motors, Yongin-si, Gyeonggi-do 16891, Korea
jhjang@kist.re.kr
Korean Journal of Chemical Engineering, February 2019, 36(2), 299-304(6), 10.1007/s11814-019-0223-0
Download PDF
Abstract
This study proposes an in situ accelerated stress test of a gas diffusion layer (GDL) at a gas-solution-electrode triple phase boundary to individually examine electrochemical and mechanical GDL aging for the first time. Electrochemical GDL stability during repeated potential jumps and mechanical GDL robustness during inert gas permeation were investigated. A Pt-loaded GDL was used to mimic a GDL in contact with Pt particles at the cathode. It was also used to evaluate GDL degradation during an accelerated stress test. In this study, the GDL that experienced an electrochemical stress of potential jumps up to 1.75 V for 27.8 h exhibited 2.9-fold and 4-fold higher losses in electrochemical surface area and oxygen reduction current, respectively, than did one eroded by Ar permeation at 325 cm3 min-1 for 100 h.
Keywords
References
Lemons RA, J. Power Sources, 29, 251 (1990)
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, Dubois DL, et al., J. Am. Chem. Soc., 113, 6624 (2013)
Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9331 (2012)
Park S, Shao Y, Viswanathan VV, Liu J, Wang Y, J. Ind. Eng. Chem., 42, 81 (2016)
Prasanna D, Selvaraj V, Korean J. Chem. Eng., 33(4), 1489 (2016)
Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33, 3127 (2016)
Kazeminasab B, Rowshanzamir S, Ghadamian H, Korean J. Chem. Eng., 34(11), 2978 (2017)
Yuan XZ, Li H, Zhang SS, Martin J, Wang HJ, J. Power Sources, 196(22), 9107 (2011)
Wu JF, Yuan XZ, Martin JJ, Wang HJ, Zhang JJ, Shen J, Wu SH, Merida W, J. Power Sources, 184(1), 104 (2008)
Horn YS, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D, Top. Catal., 46, 285 (2007)
Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
Yu S, Li X, Liu S, Hao J, Shao Z, Yi B, RSC Adv., 4, 3852 (2014)
Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD, J. Electrochem. Soc., 8, A273 (2005)
Tang H, Qi ZG, Ramani M, Elter JF, J. Power Sources, 158(2), 1306 (2006)
Jia F, Liu FF, Guo LJ, Liu HT, Int. J. Hydrog. Energy, 41(15), 6469 (2016)
Yamashita Y, Itami S, Takano J, Kakinuma K, Uchida H, Watanabe M, Iiyama A, Uchida M, J. Electrochem. Soc., 164(4), F181 (2017)
Chen GB, Zhang HM, Ma HP, Zhong HX, Int. J. Hydrog. Energy, 34(19), 8185 (2009)
Roen LM, Paik CH, Jarvi TD, J. Electrochem. Soc., 7, A19 (2004)
Nitta I, Hottinen T, Himanen O, Mikkola M, J. Power Sources, 171(1), 26 (2007)
Chang WR, Hwang JJ, Weng FB, Chan SH, J. Power Sources, 166(1), 149 (2007)
Chun JH, Jo DH, Kim SG, Park SH, Lee CH, Kim SH, Renew. Energy, 48, 35 (2012)
Srivastava R, Mani P, Hahn N, Strasser P, Angew. Chem.-Int. Edit., 46, 8988 (2007)
Das E, Gursel SA, Sanh LI, Yurtcan AB, Int. J. Hydrog. Energy, 42, 19426 (2017)
Zhao J, Shahgaldi S, Alaefour I, Xu Q, Li XG, Appl. Energy, 209, 203 (2018)
Ishikawa H, Sugawara Y, Inoue G, Kawase M, J. Power Sources, 374, 196 (2018)
Omura J, Yano H, Watanabe M, Uchida H, Langmuir, 27(10), 6464 (2011)
Vielstich W, Fuel Cells: Modern Processes for the Electrochemical Production of Energy, John Wiley & Sons, New York (1970).
Bard AJ, Faulkner LR, Electrochemical methods, John Wiley & Sons, New York (1980).
Park S, Shao Y, Wan H, Viswanathan VV, Towne SA, Rieke PC, Liu J, Wang Y, J. Phys. Chem. C, 115, 22633 (2011)
Wang H, Cote R, Faubert G, Guay D, Dodelet JP, J. Phys. Chem. B, 103(12), 2042 (1999)
Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU, Carbon, 37, 1785 (1999)
Gulyas J, Foldes E, Lazar A, Pukanszky B, Compos. Pt. A-Appl. Sci. Manuf., 32, 353 (2001)
Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y, Nat. Commun., 6, 5848 (2015)
Sugawara Y, Okayasu T, Yadav AP, Nishikata A, Tsuru T, J. Electrochem. Soc., 159(11), F779 (2012)
Hasche F, Oezaslan M, Strasser P, Phys. Chem. Chem. Phys., 12, 15251 (2010)
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, Dubois DL, et al., J. Am. Chem. Soc., 113, 6624 (2013)
Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9331 (2012)
Park S, Shao Y, Viswanathan VV, Liu J, Wang Y, J. Ind. Eng. Chem., 42, 81 (2016)
Prasanna D, Selvaraj V, Korean J. Chem. Eng., 33(4), 1489 (2016)
Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33, 3127 (2016)
Kazeminasab B, Rowshanzamir S, Ghadamian H, Korean J. Chem. Eng., 34(11), 2978 (2017)
Yuan XZ, Li H, Zhang SS, Martin J, Wang HJ, J. Power Sources, 196(22), 9107 (2011)
Wu JF, Yuan XZ, Martin JJ, Wang HJ, Zhang JJ, Shen J, Wu SH, Merida W, J. Power Sources, 184(1), 104 (2008)
Horn YS, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D, Top. Catal., 46, 285 (2007)
Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
Yu S, Li X, Liu S, Hao J, Shao Z, Yi B, RSC Adv., 4, 3852 (2014)
Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD, J. Electrochem. Soc., 8, A273 (2005)
Tang H, Qi ZG, Ramani M, Elter JF, J. Power Sources, 158(2), 1306 (2006)
Jia F, Liu FF, Guo LJ, Liu HT, Int. J. Hydrog. Energy, 41(15), 6469 (2016)
Yamashita Y, Itami S, Takano J, Kakinuma K, Uchida H, Watanabe M, Iiyama A, Uchida M, J. Electrochem. Soc., 164(4), F181 (2017)
Chen GB, Zhang HM, Ma HP, Zhong HX, Int. J. Hydrog. Energy, 34(19), 8185 (2009)
Roen LM, Paik CH, Jarvi TD, J. Electrochem. Soc., 7, A19 (2004)
Nitta I, Hottinen T, Himanen O, Mikkola M, J. Power Sources, 171(1), 26 (2007)
Chang WR, Hwang JJ, Weng FB, Chan SH, J. Power Sources, 166(1), 149 (2007)
Chun JH, Jo DH, Kim SG, Park SH, Lee CH, Kim SH, Renew. Energy, 48, 35 (2012)
Srivastava R, Mani P, Hahn N, Strasser P, Angew. Chem.-Int. Edit., 46, 8988 (2007)
Das E, Gursel SA, Sanh LI, Yurtcan AB, Int. J. Hydrog. Energy, 42, 19426 (2017)
Zhao J, Shahgaldi S, Alaefour I, Xu Q, Li XG, Appl. Energy, 209, 203 (2018)
Ishikawa H, Sugawara Y, Inoue G, Kawase M, J. Power Sources, 374, 196 (2018)
Omura J, Yano H, Watanabe M, Uchida H, Langmuir, 27(10), 6464 (2011)
Vielstich W, Fuel Cells: Modern Processes for the Electrochemical Production of Energy, John Wiley & Sons, New York (1970).
Bard AJ, Faulkner LR, Electrochemical methods, John Wiley & Sons, New York (1980).
Park S, Shao Y, Wan H, Viswanathan VV, Towne SA, Rieke PC, Liu J, Wang Y, J. Phys. Chem. C, 115, 22633 (2011)
Wang H, Cote R, Faubert G, Guay D, Dodelet JP, J. Phys. Chem. B, 103(12), 2042 (1999)
Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU, Carbon, 37, 1785 (1999)
Gulyas J, Foldes E, Lazar A, Pukanszky B, Compos. Pt. A-Appl. Sci. Manuf., 32, 353 (2001)
Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y, Nat. Commun., 6, 5848 (2015)
Sugawara Y, Okayasu T, Yadav AP, Nishikata A, Tsuru T, J. Electrochem. Soc., 159(11), F779 (2012)
Hasche F, Oezaslan M, Strasser P, Phys. Chem. Chem. Phys., 12, 15251 (2010)