ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 6, 2018
Accepted November 17, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells

Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006, Korea 1Korea Advanced Nano Fabrication Center, Suwon, Gyeonggi-do 16229, Korea
junghwan@sejong.ac.kr
Korean Journal of Chemical Engineering, February 2019, 36(2), 305-311(7), 10.1007/s11814-018-0195-5
downloadDownload PDF

Abstract

The effects of GaAs substrate off-orientation on GaInP/AlGaInP heterojunction solar cells were investigated. The performances of solar cells fabricated on 2° and 10° off GaAs substrates were compared. The short circuit current densities were 10.44 mA/cm2 for the 10° off sample, 7.15 mA/cm2 and 7.41 mA/cm2 for the 2° off samples, which showed 30% higher short-circuit current density for 10o off samples. Also, 30% higher external quantum efficiencies and smooth surface morphology were observed in the solar cell fabricated on the 10° off GaAs substrate. Secondary ion mass spectrometry depth profiles showed that the solar cells on 2° off substrates had a 20-times higher oxygen concentration than the solar cells on 10o off GaAs substrate in the n-GaAs/GaAs buffer layer. The 30% reduction for the solar cells on 2° substrates in short circuit current density (Jsc) was attributed to the higher oxygen concentration of the 2° off samples than the 10° off samples. I-V characteristics comparison between different front contact grid patterns was also performed for optimization of grid contacts. A 0.47 V bandgap-voltage offset, one of the device performance figures of merit to compare PV cells with different materials, was obtained.

References

Suzuki M, Nishikawa Y, Ishikawa M, Kokubun Y, J. Cryst. Growth, 113, 127 (1991)
Kondo M, Anayama C, Okada N, Sekiguchi H, Domen K, Tanahashi T, J. Appl. Phys., 76, 914 (1994)
Radulescu DC, Wicks GW, Schaff WJ, Calawa AR, Eastman LF, J. Appl. Phys., 63, 5115 (1988)
Suzuki T, Gomyo A, Iijima S, J. Cryst. Growth, 99, 60 (1990)
France RM, Geisz JF, Garcia I, Steiner MA, McMahon WE, et al., IEEE J. Photovoltaics, 5, 432 (2015)
Sah CT, Noyce RN, Shockley W, Proceedings of the IRE, 45, 1228 (1957)
Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, et al., IEEE J. Photovoltaics, 4, 1433 (2014)
Zhang B, Lee DH, Chae H, Park C, Cho SM, Korean J. Chem. Eng., 27(3), 999 (2010)
Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095 (2014)
Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32, 261 (2014)
Yoo IH, Kalanur SS, Eom K, Ahn B, Cho IS, Yu HK, Jeon HT, Seo HT, Korean J. Chem. Eng., 34(12), 3200 (2017)
Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678 (2016)
Feucht DL, J. Vac. Sci. Technol., 14, 57 (1977)
Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ, Appl. Phys. Lett., 103, 041118 (2013)
Masuda T, Tomasulo S, Lang JR, Lee ML, J. Appl. Phys., 117, 094504 (2015)
Moser M, Geng C, Lach E, Queisser I, Scholz F, Schweizer H, Dornen A, J. Cryst. Growth, 124, 333 (1992)
Chand N, Jordan AS, Chu SNG, Appl. Phys. Lett., 59, 3270 (1991)
Kondo M, Okada N, Domen K, Sugiura K, Anayama C, Tanahashi T, J. Electron. Mater., 23, 355 (1994)
Xiang N, Tukiainen A, Pessa M, J. Electron. Mater., 13, 549 (2002)
Yu HW, Chang EY, Nguyen HQ, Chang JT, Chung CC, Kuo CI, Wong YY, Wang WC, Appl. Phys. Lett., 97, 2008 (2010)
Hata M, Takata H, Yako T, Fukuhara N, Maeda T, Uemura Y, J. Cryst. Growth, 124, 427 (1992)
Philips BA, Norman AG, Seong TY, Mahajan S, Booker GR, Skowronski M, Harbison JP, Keramidas VG, J. Cryst. Growth, 140, 249 (1994)
Gomyo A, Suzuki T, Iijima S, Phys. Rev. Lett., 60, 2645 (1988)
Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 34(5), 1504 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로