ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 31, 2018
Accepted November 14, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Impact of pressure on the carbon structure of char during pyrolysis of bituminous coal in pressurized entrained-flow reactor

1Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China 2Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
Korean Journal of Chemical Engineering, March 2019, 36(3), 393-403(11), 10.1007/s11814-018-0187-5
downloadDownload PDF

Abstract

The impact of pressure on the carbon structure of a Chinese bituminous coal was investigated using a pressurized entrained-flow reactor in the temperature and pressure ranges of 700-900 °C and 0.1-4.0MPa, respectively. Pyrolysis pressure had a significant influence on the physiochemical and carbon structure of chars. The specific surface area and the swelling ratio of chars reached their highest values at 1.0MPa. Fourier transform infrared spectroscopy (FTIR) analysis showed that higher pressures enhanced the decomposition of functional groups in chars. Raman spectroscopy analysis results revealed that at elevated pressures, the organic matrix and functional groups were removed from the char structure, leading to higher ordering of the carbon structure. During X-ray diffraction (XRD) analysis, parameters such as the stacking height (Lc), interlayer spacing (d002) and lateral size of the graphite structures (La) were used to evaluate the graphitic structures in chars. The results showed an increase in Lc, La, and the average number of graphene sheets with pyrolysis pressure, indicating a more ordered carbon structure at elevated pressures. The d-spacing of char was in the range of 3.34-3.37 A, similar to typical graphitic structures.

References

Das T, Chauhan H, Deka S, Chaudhary S, Boruah R, Saikia BK, Microporous Mesoporous Mater., 253, 80 (2017)
Ye R, Peng Z, Metzger A, Lin J, Mann JA, Huang K, Xiang C, Fan X, Samuel ELG, Alemany LB, Marti AA, Tour JM, ACS Appl. Mater. Interf., 7, 7041 (2015)
Moothi K, Iyuke SE, Meyyappan M, Falcon R, Carbon, 50, 2679 (2012)
Zhou Q, Zhao Z, Zhang Y, Meng B, Zhou A, Qiu J, Energy Fuels, 26, 5186 (2012)
Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel ELG, Hwang CC, Ruan G, Ceriotti G, Raji ARO, Marti AA, Tour JM, Nature Commun., 4, 2943 (2013)
Liu T, Luo RY, Qiao WM, Yoon SH, Mochida I, Electrochim. Acta, 55(5), 1696 (2010)
Smith AJ, MacDonald MJ, Ellis LD, Obrovac MN, Dahn JR, Carbon, 50, 3717 (2012)
Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S, Electrochim. Acta, 178, 721 (2015)
Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S, Ladewig BP, Appl. Energy, 120, 56 (2014)
McDonald-Wharry J, Manley-Harris M, Pickering K, Carbon, 59, 383 (2013)
Harris DJ, Roberts DG, Henderson DG, Fuel, 85(2), 134 (2006)
Zeng D, Fletcher TH, Energy Fuels, 19(5), 1828 (2005)
Griffin TP, Howard JB, Peters WA, Fuel, 73, 591 (1994)
Cai HY, Guell AJ, Chatzakis IN, Lim JY, Dugwell DR, Kandiyoti R, Fuel, 75, 15 (1996)
Howaniec N, Fuel, 172, 118 (2016)
Seebauer V, Petek J, Staudinger G, Fuel, 76(13), 1277 (1997)
Sun CL, Xiong YQ, Liu QX, Zhang MY, Fuel, 76(7), 639 (1997)
Yun Y, Lee GB, Korean J. Chem. Eng., 16(6), 798 (1999)
Jimenez F, Mondragon F, Lopez D, J. Anal. Appl. Pyrolysis, 95, 164 (2012)
Lee CW, Scaroni AW, Jenkins RG, Fuel, 70, 957 (1991)
Wu HW, Bryant G, Benfell K, Wall T, Energy Fuels, 14(2), 282 (2000)
Yu JL, Harris D, Lucas J, Roberts D, Wu HW, Wall T, Energy Fuels, 18(5), 1346 (2004)
Zeng D, Clark M, Gunderson T, Hecker WC, Fletcher TH, Proc. Combust. Inst., 30, 2213 (2005)
Tremel A, Haselsteiner T, Nakonz M, Spliethoff H, Energy, 45(1), 176 (2012)
Roberts DG, Harris DJ, Wall TF, Energy Fuels, 17(4), 887 (2003)
Gong X, Zhang S, J. Anal. Appl. Pyrolysis, 127, 170 (2017)
Chabalala VP, Wagner N, Potgieter-Vermaak S, Fuel Process. Technol., 92(4), 750 (2011)
Zaida A, Bar-Ziv E, Radovic LR, Lee YJ, Proc. Combust. Inst., 31, 1881 (2007)
Sheng C, Fuel, 86(15), 2316 (2007)
Xiao J, Li F, Zhong Q, Huang J, Wang B, Zhang Y, J. Anal. Appl. Pyrolysis, 117, 64 (2016)
Wu ZQ, Wang SZ, Zhao J, Chen L, Meng HY, Fuel, 171, 65 (2016)
Li SD, Chen XL, Liu AB, Wang L, Yu GS, Bioresour. Technol., 179, 414 (2015)
Li SD, Chen XL, Liu AB, Wang L, Yu GS, Bioresour. Technol., 155, 252 (2014)
Haider A, Levenspiel O, Powder Technol., 58, 63 (1989)
Reichel D, Siegl S, Neubert C, Krzack S, Fuel, 158, 983 (2015)
Niksa S, Combust. Flame, 100, 384 (1995)
Tomeczek J, Gil S, Fuel, 82(3), 285 (2003)
Maliutina K, Tahmasebi A, Yu JL, Bioresour. Technol., 256, 160 (2018)
Park HY, Ahn DH, Korean J. Chem. Eng., 24(1), 24 (2007)
Gil MV, Riaza J, Alvarez L, Pevida C, Pis JJ, Rubiera F, Appl. Energy, 91(1), 67 (2012)
Yu JL, Strezov V, Lucas J, Liu GS, Wall T, Proc. Combust. Inst., 29, 467 (2002)
Jenkins DR, Mahoney MR, Fuel, 153, 585 (2015)
Yu JL, Lucas JA, Wall TF, Prog. Energy Combust. Sci., 33(2), 135 (2007)
Strezov V, Lucas JA, Wall TF, Fuel, 84(10), 1238 (2005)
Li CY, Zhao JT, Fang YT, Wang Y, Energy Fuels, 23, 5099 (2009)
Meng FR, Yu JL, Tahmasebi A, Han YN, Zhao H, Lucas J, Wall T, Energy Fuels, 28(1), 275 (2014)
Yuan T, Tahmasebi A, Yu JL, Bioresour. Technol., 175, 333 (2015)
Zhu XL, Sheng CD, Fuel Process. Technol., 91(8), 837 (2010)
Beyssac O, Goffe B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 59, 2267 (2003)
Yin Y, Zhang J, Sheng C, Korean J. Chem. Eng., 26(3), 895 (2009)
Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U, Carbon, 43, 1731 (2005)
Li CZ, Fuel, 86(12-13), 1664 (2007)
Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
Bai YH, Wang YL, Zhu SH, Li F, Xie KC, Energy, 74, 464 (2014)
Li XJ, Hayashi J, Li CZ, Fuel, 85(12-13), 1700 (2006)
Singh DK, Iyer PK, Giri PK, Diam. Relat. Mat., 19, 1281 (2010)
Sakintuna B, Yurum Y, Energy Fuels, 18(3), 883 (2004)
Gurudatt K, Tripathi VS, Carbon, 36, 1371 (1998)
Feng B, Bhatia SK, Barry JC, Carbon, 40, 481 (2002)
Fujimoto H, Shiraishi M, Carbon, 39, 1753 (2001)
Kim R, Lee J, Lee KH, RSC Adv., 6, 24667 (2016)
Yang KS, Yoon YJ, Lee MS, Lee WJ, Kim JH, Carbon, 40, 897 (2002)
Yang Y, Lin Q, Huang Y, Guo D, J. Anal. Appl. Pyrolysis, 91, 310 (2011)
Moriyama R, Kumagai H, Hayashi JI, Yamaguchi C, Mondori J, Matsui H, Chiba T, Carbon, 38, 749 (2000)
Huang Y, Li WY, Wu GS, Feng J, Yi Q, Energy Fuels, 31(11), 12977 (2017)
Hosseini T, De Girolamo A, Zhang L, Energy Fuels, 32(3), 3211 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로