ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 15, 2018
Accepted December 18, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system

Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, P. R. China 1College of Civil Engineering and Architecture, Changchun Sci-Tech University, Changchun City, Jilin Province, P. R. China
haimm110@126.com
Korean Journal of Chemical Engineering, March 2019, 36(3), 411-422(12), 10.1007/s11814-018-0213-7
downloadDownload PDF

Abstract

The experimental results and material balance analysis in this paper revealed the regularity of poly-hydroxy alkanoates (PHA) and total phosphorus (TP) metabolism in a continuous-flow single-sludge wastewater treatment system under different main anoxic section oxidation-reduction potential (ORPan) conditions. We also evaluated the effectiveness of the operation control parameters of ORPan as the continuous-flow single-sludge sewage treatment system from the aspect of the reaction mechanism. Using a programmable logic controller (PLC) automatic control system to take the circulating flow in nitrification as the controlled variable based on the feedback control structure, an experimental study was carried out under the condition of ORPan setting value of -143mV, -123mV, -105mV, -95mV, -72 mV and -57mV, respectively, with other operational design parameters remaining unchanged. Influent water quality of chemical oxygen demand/total nitrogen (COD/TN) was 5.0±0.6. The results showed that when ORPan was set at .95mV, the maximum values of PHA synthesis and storage rate, PHA degradation rate, phosphorus release rate and phosphorus absorption rate in anaerobic and pre-anoxic segments were 82.34, 7.90, 47.31, 14.27, 1.50 and 8.52mg/ (L·h), respectively. According to the metabolic mechanism of PHA and TP, ORPan was further proved to be the operation control parameter of the continuous-flow single-sludge sewage treatment system, and when the COD/TN value was 5.0±0.6, the optimal setting value was -95mV

References

Sun Y, Chen Z, Wu GX, Wu QY, Zhang F, Niu ZB, Hu HY, J. Clean Prod., 131, 1 (2016)
Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF, Sci. Total Environ., 596-597, 303 (2017)
Guerrero J, Guisasola A, Baeza JA, Water Res., 45, 4793 (2011)
Zhu YX, Tu XJ, Chai XS, Wei Q, Guo LN, Bioresour. Technol., 251, 7 (2018)
Zeng W, Li L, Yang YY, Wang XD, Peng YZ, Enzyme Microb. Technol., 48(2), 134 (2011)
Yuan QY, Oieszkiewicz J, Desalination Water Treatment, 22, 72 (2010)
Kapagiannidis AG, Zafiriadis I, Aivasidis A, New Biotechnol., 30, 227 (2013)
Zou HM, Wang Y, Bioresour. Technol., 221, 87 (2016)
Souza SM, Araujo O, Coelho MAZ, Bioresour. Technol., 99(8), 3213 (2008)
Vaiopoulou E, Aivasidis A, Chemosphere, 72, 1062 (2008)
Duan JM, Li W, Zhao K, Krampe J, Desalination Water Treatment, 40, 24 (2012)
Peng L, Dai XH, Liu YW, Sun J, Song SX, Ni BJ, Chemosphere, 197, 430 (2018)
Bortone G, Libelli SM, Tilche A, Wanner J, Water Sci. Technol., 40, 177 (1999)
Wang J, Wang L, Cui E, Lu H, Korean J. Chem. Eng., 35(6), 1274 (2018)
Nancharaiah YV, Mohan SV, Lens PNL, Bioresour. Technol., 215, 173 (2016)
Cardete MA, Mata-Alvarez J, Dosta J, Nieto-Sanchez R, J. Environ. Chem. Eng., 5, 3472 (2017)
Wang XL, Yin J, Gao S, Environ. Sci., 33, 175 (2012)
Zhu GB, Peng YZ, Wang SY, Wu SY, Ma B, Chem. Eng. J., 131(1-3), 319 (2007)
Soares A, Kampas P, Maillard S, Wood E, Brigg J, Tillotson M, Parsons SA, Cartmell E, J. Hazard. Mater., 175(1-3), 733 (2010)
Bergendahl J, Stevens L, Environ. Progress, 24, 214 (2005)
Pagacova P, Blstakova A, Drtil M, Continually Measured ORP and pH Signal for Control of Nitrogen Removal, Springer Netherlands (2002).
Ruano MV, Ribes J, Seco A, Ferrer J, Chem. Eng. J., 183, 212 (2012)
Ma Y, Peng YZ, Wang SY, China Environ. Sci., 25, 252 (2005)
Kim HT, Kim GS, Shin SW, Oh SH, Kim KH, KSCE J. Civil Eng., 9, 73 (2005)
Liu X, Chen QW, Zhu L, J. Environ. Sci., 47, 174 (2016)
Chuang SH, Ouyang CF, Water Res., 34, 2283 (2000)
Munchen IG, Braunschweig IK, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).
Water Environment Federation, Design of Municipal Wastewater Treatment Plants, New York (2010).
Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).
Wang XF, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub, Beijing (2002).
Maizel AC, Remucal CK, Water Res., 122, 42 (2017)
Wang XL, Song TH, Yu XD, Desalination Water Treatment, 56, 1877 (2015)
Wang XL, Song TH, Yin Y, Environ. Sci., 36, 2617 (2015)
Caulet P, Bujon B, Philippe JP, Lefevre F, Audic JM, Water Sci. Technol., 37, 41 (1998)
Kuba T, van Loosdrechtt MCM, Water Sci. Technol., 27, 241 (1993)
Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, IWA Publishing, London (2010).
Boontian N, Eng. Technol., 64, 984 (2012)
Bi DS, Guo XP, Chen DH, Water Sci. Technol., 67, 1953 (2013)
Kim MG, Nakhla G, Water Environ. Res., 82, 69 (2010)
Qi R, Yu T, Li ZL, Li D, J. Environ. Sci., 24, 571 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로