ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 14, 2018
Accepted December 13, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Cell structure destruction and its kinetics during hydrothermal treatment of sewage sludge

1Department of Mechanical Sciences and Engineering, Hiroshima University, Higashi-Hiroshima, Japan 2Original Affiliation: Department of Mechanical Engineering, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
mat@hiroshima-u.ac.jp
Korean Journal of Chemical Engineering, March 2019, 36(3), 433-438(6), 10.1007/s11814-018-0212-8
downloadDownload PDF

Abstract

During hydrothermal treatment (HT) of sewage sludge (SS), its cell structure is decomposed and its organic content is released. An increase in the total organic carbon content in the liquid phase was experimentally determined in the temperature range of 130-250 °C with a fixed pressure of 5MPa and residence time of 10min. By using the Arrhenius equation, the pre-exponential factor and activation energy were successfully determined for the first time for the degradation of SS cells as 3.96 X 1010 s-1 and 115 kJ mol-1, respectively, for the temperature range of 130-250 °C. Increasing the HT temperature increasingly destroyed the cell structure of SS.

References

Li RD, Ma ZM, Yang TH, Li BS, Wei LH, Sun Y, J. Supercrit. Fluids, 138, 115 (2018)
Suarez-Iglesias O, Urrea JL, Oulego P, Collado S, Diaz M, Sci. Total Environ., 584-585, 921 (2017)
Nawaz MS, Ahsan M, Alexandria Eng. J., 53, 717 (2014)
Li X, Guo S, Peng Y, He Y, Wang S, Li L, Zhao M, Biochem. Eng. J., 139, 139 (2018)
Sahlstrom L, Aspan A, Bagge E, Danielsson-Tham ML, Albihn A, Water Res., 38, 1989 (2004)
WHO, Unicef, Global Water Supply and Sanitation Assessment 2000 Report, Water Supply, 87 (2000).
Jin F, Enomoto H, BioResources, 4, 704 (2009)
Karak T, Bhattacharyya P, Resour. Conserv. Recycl., 55, 400 (2011)
Qiao W, Wang W, Wan X, Xia Z, Deng Z, J. Residuals Sci. Technol., 7, 7 (2010)
Langergraber G, Muellegger E, Environ. Int., 31, 433 (2005)
Deng SH, Tan HZ, Wang XB, Yang FX, Cao RJ, Wang Z, Ruan RH, Bioresour. Technol., 239, 302 (2017)
Liu T, Guo Y, Peng N, Lang Q, Xia Y, Gai C, Liu Z, J. Anal. Appl. Pyrolysis, 126, 298 (2017)
Gong M, Zhu W, Zhang HW, Su Y, Fan YJ, J. Supercrit. Fluids, 113, 112 (2016)
Han HD, Hu S, Syed-Hassan SSA, Xiao YM, Wang Y, Xu J, Jiang L, Su S, Xiang J, Bioresour. Technol., 236, 138 (2017)
He C, Chen CL, Giannis A, Yang Y, Wang JY, Renew. Sust. Energ. Rev., 39, 1127 (2014)
Yanagida T, Minowa T, Nakamura A, Matsumura Y, Noda Y, J. Jpn. Inst. Energy, 83, 731 (2008)
Petzet S, Peplinski B, Cornel P, Water Res., 46, 3769 (2012)
Qian LL, Wang SZ, Savage PE, Bioresour. Technol., 232, 27 (2017)
Li H, Jin YY, Mahar RB, Wang ZY, Nie YF, J. Hazard. Mater., 161(2-3), 1421 (2009)
Diak J, Ormeci B, Proux C, Water Sci. Technol., 63, 1309 (2011)
Urrea JL, Garcia M, Collado S, Oulego P, Diaz M, J. Environ. Manage., 206, 284 (2018)
Urrea JL, Collado S, Laca A, Diaz M, J. Water Process Eng., 5, 153 (2015)
Haug RT, Stuckey DC, Gossett JM, Mccarty PL, Water Pollut. Control Fed., 50, 73 (1978)
Wu Y, Song K, Jiang Y, Sun X, Li L, Biochem. Eng. J., 139, 132 (2018)
Rollin JA, Bomble YJ, John PCS, Stark AK, Biochem. Eng. J., in press (2018).
Cantrell K, Ro K, Mahajan D, Anjom M, Hunt PG, Ind. Eng. Chem. Res., 46(26), 8918 (2007)
Titirici MM, Thomas A, Antonietti M, New J. Chem., 31, 787 (2007)
Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fuhner C, Bens O, Kern J, Emmerich KH, Biofuels, 2, 89 (2011)
Kato A, Matsumura Y, J. Jpn. Inst. Energy, 82, 97 (2003)
Matsumoto R, Aki T, Okamura Y, Tajima T, Nakashimada Y, Matsumura Y, J. Jpn. Inst. Energy, 93, 531 (2014)
Yin FJ, Chen HZ, Xu GH, Wang GW, Xu YJ, Bioresour. Technol., 198, 351 (2015)
Moon J, Mun TY, Yang W, Lee U, Hwang J, Jang E, Choi C, Energy Conv. Manag., 103, 401 (2015)
Yoshida T, Nonaka H, Matsumura Y, J. Jpn. Inst. Energy, 84, 544 (2005)
Petchpradab P, Yoshida T, Charinpanitkul T, Matsumura Y, Ind. Eng. Chem. Res., 48(9), 4587 (2009)
Yu J, Guo M, Xu X, Guan B, Water Res., 50, 10 (2014)
Kyotani T, Hayashi S, Tomita A, Energy Fuels, 5, 683 (1991)
Wang L, Li A, Chang Y, Water Res., 112, 72 (2017)
Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB, Bioresour. Technol., 178, 147 (2015)
Colak U, Durak H, Genel S, J. Supercrit. Fluids, 140, 53 (2018)
The National Environmental Services Center, Pipeline, 14, 1 (2003).
Unami Y, Kanna M, Yanagida T, Matsumura Y, Proc. 8th Conference on Biomass Science, Japan Jan. 9-10, 2013.
Everett JG, J. Water Pollut. Control. Fed., 44, 92 (1972)
Wang L, Zhang L, Li A, Water Res., 65, 85 (2014)
Imbierowicz M, Chacuk A, Water Res., 46, 5747 (2012)
Mohamad R, Aki T, Nakashimada Y, Okamura Y, Tajima T, Matsumura Y, J. Japan Pet. Inst., 59, 149 (2016)
Goto M, Nada T, Kodama A, Hirose T, Ind. Eng. Chem. Res., 38(5), 1863 (1999)
Bougrier C, Delgenes JP, Carrere H, Chem. Eng. J., 139(2), 236 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로