ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 18, 2018
Accepted December 20, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Phenol removal from aqueous solution using amino modified silica nanoparticles

1Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt 2Chemistry Department, Faculty of Science, Qassim University, Buraidah, KSA, Egypt 3Aquatic Environment Department, Faculty of Fish Resources, Suez University, 43518 Suez, Egypt 4Chemistry Department, Faculty of Science, Qassim University, Buraidah, KSA, Saudi Arabia 5Chemistry Department, Faculty of Science, Suez University, 43518 Suez, Egypt 6Marine Chemistry lab, National Institute of Oceanography & Fisheries, Suez, Egypt
Korean Journal of Chemical Engineering, April 2019, 36(4), 529-539(11), 10.1007/s11814-018-0217-3
downloadDownload PDF

Abstract

Phenols constitute a widespread class of water pollutants that are generated from many industries and are known to cause a significant threat to the aquatic environment. Phenols are, therefore, considered as dangerous pollutants by global international quality organizations. This has led to a growing demand for an efficient technology for phenol removal from wastewater. Different sizes of amino-modified silica nanoparticles (SiNPs) were synthesized with 10-40nm in diameter (AMS-10 to 40), and their properties were characterized in terms of size and surface modification using transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential, elemental analyses (C, H, N), thermal gravimetric analysis (TGA) and Fourier transform infra-red (FTIR). The adsorption process was carried out utilizing batch mode experiment; the influence of various factors including pH of the medium, the contact time, the initial concentration of the adsorbate and the dose of the adsorbent on the phenol adsorption efficiency of SiNPs of various sizes were investigated. Phenol removal efficiency was found to be size-dependent, such that the phenol adsorption capacity of the SiNPs was in the following order: AMS-10>AMS-20>AMS-30>AMS-40 nm. The adsorption capacity and binding coefficient were calculated to be 35.2mg/g and 0.192mg/L, respectively, for AMS-10. The amino-modified SiNPs were found to be promising adsorbents for the phenol ions removal from the aqueous medium.

References

Zhang L, Liu J, Tang C, Lv J, Zhong H, Zhao YJ, Wang X, Appl. Clay Sci., 51, 68 (2011)
Said TO, Farag RS, Younis AM, Shreadah MA, Bullet. Environ. Contam. Toxic., 77, 451 (2006)
(a) Younis AM, Nafea SM, World Appl. Sci. J., 19, 1423 (2012); (b) Gulay B, Aydin A, Yakup AM, J. Hazard. Mater., 244, 528 (2013).
Busca G, Berardinelli S, Resini C, Arrighi L, J. Hazard. Mater., 160(2-3), 265 (2008)
Federal Register, Environmental Protection Agency, Part VIII, 40 CFR Part 136, 58 (1984).
Mirian ZA, Nezamzadeh-Ejhieh A, Desalination and Water Treatment, 1 (2015).
Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes M, Nature, 452, 301 (2008)
Dichiara AB, Weinstein SJ, Rogers RE, Ind. Eng. Chem. Res., 54(34), 8579 (2015)
Canizares P, Carmona M, Baraza O, Delgado A, Rodrigo MA, J. Hazard. Mater., 131(1-3), 243 (2006)
Dabrowski A, Podkoscielny P, Hubicik Z, Barczak M, Chemosphere, 58, 1049 (2005)
Lazarova Z, Boyadzhieva S, Chem. Eng. J., 100(1-3), 129 (2004)
Alhamed YA, Bulg. Chem. Comm., 40, 26 (2008)
Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391 (2002)
Nomanbahay S, Palanisamy K, Electron. J. Biotechnol., 8, 43 (2005)
Alderman NS, N'Guessan AL, Nyman MC, J. Hazard. Mater., 146(3), 652 (2007)
Sano N, Yamamoto T, Yamamoto D, Kim SI, Eiad-Ua A, Shinomiya H, Nakaiwa M, Chem. Eng. Process., 46(6), 513 (2007)
Hydari S, Sharififard H, Nabavinia M, Parvizi MR, Chem. Eng. J., 193, 276 (2012)
Bhattacharyya K, Gupta S, Colloids Surf. A: Physicochem. Eng. Asp., 277, 191 (2007)
Halhouli KA, Darwish NA, Aldhoon NM, Sep. Sci. Technol., 30(17), 3313 (1995)
Mitra S, Sample Preparation Techniques in Analytical Chemistry, Wiley, Hoboken, New Jersey (2003).
Singh DK, Srivastava B, J. Sci. Ind. Res., 61, 208 (2002)
Kulkarni S, Kaware J, Int. J. Sci. Eng. Res., 1, 88 (2013)
Younis AM, Nafea EMA, Mosleh YYI, Hefnawy MS, J. Medit. Ecol., 14, 55 (2016)
Ektefa F, Javadian S, Rahmati M, J. Taiwan Inst. Chem. Engineers, 88, 104 (2018)
Tancredi N, Medero N, Moller F, Piriz J, Plada C, Cordero T, J. Colloid Interface Sci., 279(2), 357 (2004)
Yang K, Wu W, Jing Q, Zhu L, Environ. Sci. Technol., 42, 7931 (2008)
Pan BJ, Pan BC, Zhang WM, Zhang QR, Zhang QX, Zheng SR, J. Hazard. Mater., 157(2-3), 293 (2008)
Vazquez I, Rodriguez-Iglesias J, Maranon E, Castrillon L, Alvarez M, J. Hazard. Mater., 147, 395 (2005)
Ahmad ZU, Lian Q, Zappi ME, Buchireddy PR, Gang DD, J. Environ. Sci., 75, 307 (2019)
Ku Y, Lee KC, J. Hazard. Mater. B, 80, 59 (2000)
Chen A, Li Y, Yu Y, Li Y, Xia K, Wang Y, Li S, Zhang L, Carbon, 103, 157 (2016)
Ebrahimi-Gatkash M, Younesi H, Shahbazi A, Heidari A, Appl. Water Sci., 7(4), 1887 (2017)
Radeke KH, Loseh D, Struve K, Weiss E, Zeolites, 13, 69 (1993)
Kim S, Marand E, Microporous Mesoporous Mater., 114, 129 (2008)
Martinez VM, Sanchez VP, Martinez JMM, Eur. Polym. J., 44, 3146 (2008)
Shiomi S, Kawamori M, Yagi S, Matsubara E, J. Colloid Interface Sci., 460, 47 (2015)
Chen CG, Justice RS, Schaefer DW, Baur JW, Polymer, 49(17), 3805 (2008)
Ritchie SMC, Bachas LG, Olin T, Sikdar SK, Bhattacharyya D, Langmuir, 15(19), 6346 (1999)
Mattigod SV, Feng XD, Fryxell GE, Liu J, Gong ML, Sep. Sci. Technol., 34(12), 2329 (1999)
Yantasee W, Lin YH, Fryxell GE, Busche BJ, Birnbaum JC, Sep. Sci. Technol., 38(15), 3809 (2003)
Iwamoto S, Tanakulrungsank W, Inoue M, Kagawa K, Praserthdam P, J. Mat. Sci. Lett., 19, 1439 (2000)
Saleh SM, Muller R, Mader HS, Duerkop A, Wolfbeis OS, Anal. Bioanal. Chem., 398, 1615 (2010)
Mader HS, Li X, Saleh SM, Link M, Kele P, Wolfbeis OS, Ann. N. Y. Acad. Sci., 1130, 213 (2008)
Stober W, Fink A, J. Colloid Interface Sci., 26, 62 (1968)
(a)Achatz DE, Heiligtag FJ, Li X, Link M, Wolfbeis OS, Sens. Act. B: Chem., 150, 211 (2010); (b)Ali R, Saleh SM, Elshaarawy RFM, RSC Adv., 6(90), 86965 (2010).
Malvern Instruments Ltd., https://www.malvernpanalytical.com/en. Accessed February 2019.
Jasco Inc. http://www.jascoinc.com/spectroscopy/ft-ir-4000-series.Accessed February 2019.
Martin RW, Analyt. Chem., 21, 1419 (1949)
Qhobosheane M, Santra S, Zhang P, Tan W, Analyst, 126, 1274 (2001)
Bhakta S, Dixit CK, Bist I, Jalil KA, Suib SL, Rusling, JF, Mater. Res. Express, 3(7), 075025 (2016)
Thawornchaisit U, Pakulanon K, Bioresour. Technol., 98(1), 140 (2007)
Bhatnagar A, J. Hazard. Mater., 139(1), 93 (2007)
Zainudin NF, Abdullah AZ, Mohamed AR, J. Hazard. Mater., 174(1-3), 299 (2010)
Allen SJ, Gan Q, Matthews R, Johnson PA, J. Colloid Interface Sci., 286(1), 101 (2005)
Asmaly HA, Abussaud B, Saleh TA, Gupta VK, Atieh MA, J. Saudi Chem. Soc., 19, 511 (2015)
Yang GD, Tang L, Zeng GM, Cai Y, Tang J, Pang Y, Zhou YY, Liu YY, Wang JJ, Zhang S, Xiong WP, Chem. Eng. J., 259, 854 (2015)
Younis AM, Kolesnikov AV, Desyatov AV, Am. J. Anal. Chem., 5(17), 1273 (2014)
Anbia M, Khoshbooei S, J. Nanostruct. Chem., 5, 139 (2005)
Lin YF, Chen JL, J. Colloid Interface Sci., 420, 74 (2014)
Kumar S, Upadhyay SN, Upadhya YD, Chem. Tech. Biotechnol., 37, 281 (1987)
Kuleyin A, J. Hazard. Mater., 144(1-2), 307 (2007)
Pal P, Kumar R, Sep. Purif. Rev., 43, 89 (2014)
Zhang X, Zhao J, Cheng L, Lu C, Wang Y, He X, Zhang W, RSC Adv., 4, 55195 (2015)
Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM, Colloids Surf. A: Physicochem. Eng. Asp., 272, 89 (2006)
Hameed BH, Rahman AA, J. Hazard. Mater., 60, 576 (2008)
Yuh-Shan H, Scientometrics, 59(1), 171 (2004)
Ho YS, Water Res., 40(1), 119 (2006)
Tien C, Ramarao BV, Sep. Purif. Technol., 136, 303 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로