Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 27, 2018
Accepted January 30, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Palladium-copper membrane modules for hydrogen separation at elevated temperature and pressure
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 1Carbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
Korean Journal of Chemical Engineering, April 2019, 36(4), 563-572(10), 10.1007/s11814-019-0237-7
Download PDF
Abstract
Two Pd-Cu alloy membrane modules were designed to recover high-purity hydrogen from a mixture at elevated temperature and pressure. Permeation and separation behavior were studied experimentally and theoretically using pure hydrogen gas and a binary mixture of H2/CO2 (58.2 : 41.8 in vol%) at 250-350 °C and 800-1,200 kPa. The Pd-Cu membrane modules presented a maximum permeation flux at the highest temperature (350 °C ) and pressure (1,200 kPa) both for pure H2 gas and the binary mixture. When the permeate and retentate flowed in the same direction in the membrane module (co-current flow), a temperature gradient and permeation flux variations were observed and the permeance of the H2/CO2 mixture was 2.263 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 250 °C and 3.409 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 350 °C. On the other hand, when the retentate flowed in the opposite direction to the permeate flow (counter-current flow), the temperature gradient and permeation flux variations were significantly reduced and the permeation flux improved by about 11% from that of the co-current flow module. The well-distributed temperature profile inside the module and increased hydrogen pressure difference through the membrane layer shortened the time to reach the steady state in the counter-current Pd-Cu membrane module, thus enhancing the membrane performance. The results of this study can contribute towards developing an efficient Pd-Cu membrane reactor.
Keywords
References
Adhikari S, Fernando S, Ind. Eng. Chem. Res., 45(3), 875 (2006)
Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5753 (2013)
Dolan MD, J. Membr. Sci., 362(1-2), 12 (2010)
Han YJ, Kang JH, Kim HE, Moon JH, Cho CH, Lee CH, Ind. Eng. Chem. Res., 56(9), 2582 (2017)
Han YJ, Ko KJ, Choi HK, Moon JH, Lee CH, Sep. Purif. Technol., 182, 151 (2017)
Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112 (2008)
Rahimpour M, Samimi F, Babapoor A, Tohidian T, Mohebi S, Palladium membranes applications in reaction systems for hydrogen separation and purification, Process Intensification (2017).
Gao HY, Lin YS, Li YD, Zhang BQ, Ind. Eng. Chem. Res., 43(22), 6920 (2004)
Al-Mufachi N, Rees N, Steinberger-Wilkens R, Renew. Sust. Energ. Rev., 47, 540 (2015)
Way JD, Palladium/copper alloy composite membranes for high temperature hydrogen separation from coal-derived gas streams, Colorado School of Mines (US) (2003).
Conde JJ, Marono M, Sanchez-Hervas JM, Sep. Purif. Rev., 46, 152 (2017)
Gryaznov V, Platinum Met. Rev., 30, 68 (1986)
Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124 (2011)
Gallucci F, Fernandez E, Corengia P, Annaland MV, Chem. Eng. Sci., 92, 40 (2013)
Baronskaya NA, Minyukova TP, Sipatrov AG, Demeshkina MP, Khassin AA, Dimov SV, Kozlov SP, Kuznetsov VV, Terentiev VY, Khristolyubov AP, Brizitskiy OF, Yurieva TM, Chem. Eng. J., 134(1-3), 195 (2007)
Blaisdell CT, Kammermeyer K, Chem. Eng. Sci., 28, 1249 (1973)
Basile A, Paturzo L, Gallucci F, Catal. Today, 82(1-4), 275 (2003)
Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A, Int. J. Hydrog. Energy, 33(21), 6165 (2008)
Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E, Catal. Today, 118(1-2), 237 (2006)
Piemonte V, De Falco M, Favetta B, Basile A, Int. J. Hydrog. Energy, 35(22), 12609 (2010)
Kim CH, Han JY, Lim H, Kim DW, Ryi SK, Korean J. Chem. Eng., 34(4), 1260 (2017)
Moon JH, Lee CH, AIChE J., 53(12), 3125 (2007)
Moon JH, Bae JH, Han YJ, Lee CH, J. Membr. Sci., 356(1-2), 58 (2010)
He X, Nieto DR, Lindbrathen A, Hagg MB, Membrane System Design for CO2 Capture, Design, Control and Integration, 10249 (2017).
Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246 (2015)
Huang Y, Merkel TC, Baker RW, J. Membr. Sci., 463, 33 (2014)
Caravella A, Scura F, Barbieri G, Drioli E, J. Phys. Chem. B, 114(18), 6033 (2010)
Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356 (2011)
Gielens FC, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 289(1-2), 15 (2007)
Ward TL, Dao T, J. Membr. Sci., 153(2), 211 (1999)
Moon JH, Bae JH, Bae YS, Chung JT, Lee CH, J. Membr. Sci., 318(1-2), 45 (2008)
Yuan LX, Goldbach A, Xu HY, J. Phys. Chem. B, 111(37), 10952 (2007)
Howard BH, Killmeyer RP, Rothenberger KS, Cugini AV, Morreale BD, Enick RM, Bustamante F, J. Membr. Sci., 241(2), 207 (2004)
Goldbach A, Yuan LX, Xu HY, Sep. Purif. Technol., 73(1), 65 (2010)
Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, AIChE J., 50(5), 1028 (2004)
Helling RK, Tester JW, Energy Fuels, 1, 417 (1987)
Kulprathipanja A, Alptekin GO, Falconer JL, Way JD, Ind. Eng. Chem. Res., 43(15), 4188 (2004)
Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
Lee SW, Park JS, Lee CB, Lee DW, Kim H, Ra HW, Kim SH, Ryi SK, Energy, 66, 635 (2014)
Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5753 (2013)
Dolan MD, J. Membr. Sci., 362(1-2), 12 (2010)
Han YJ, Kang JH, Kim HE, Moon JH, Cho CH, Lee CH, Ind. Eng. Chem. Res., 56(9), 2582 (2017)
Han YJ, Ko KJ, Choi HK, Moon JH, Lee CH, Sep. Purif. Technol., 182, 151 (2017)
Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112 (2008)
Rahimpour M, Samimi F, Babapoor A, Tohidian T, Mohebi S, Palladium membranes applications in reaction systems for hydrogen separation and purification, Process Intensification (2017).
Gao HY, Lin YS, Li YD, Zhang BQ, Ind. Eng. Chem. Res., 43(22), 6920 (2004)
Al-Mufachi N, Rees N, Steinberger-Wilkens R, Renew. Sust. Energ. Rev., 47, 540 (2015)
Way JD, Palladium/copper alloy composite membranes for high temperature hydrogen separation from coal-derived gas streams, Colorado School of Mines (US) (2003).
Conde JJ, Marono M, Sanchez-Hervas JM, Sep. Purif. Rev., 46, 152 (2017)
Gryaznov V, Platinum Met. Rev., 30, 68 (1986)
Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124 (2011)
Gallucci F, Fernandez E, Corengia P, Annaland MV, Chem. Eng. Sci., 92, 40 (2013)
Baronskaya NA, Minyukova TP, Sipatrov AG, Demeshkina MP, Khassin AA, Dimov SV, Kozlov SP, Kuznetsov VV, Terentiev VY, Khristolyubov AP, Brizitskiy OF, Yurieva TM, Chem. Eng. J., 134(1-3), 195 (2007)
Blaisdell CT, Kammermeyer K, Chem. Eng. Sci., 28, 1249 (1973)
Basile A, Paturzo L, Gallucci F, Catal. Today, 82(1-4), 275 (2003)
Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A, Int. J. Hydrog. Energy, 33(21), 6165 (2008)
Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E, Catal. Today, 118(1-2), 237 (2006)
Piemonte V, De Falco M, Favetta B, Basile A, Int. J. Hydrog. Energy, 35(22), 12609 (2010)
Kim CH, Han JY, Lim H, Kim DW, Ryi SK, Korean J. Chem. Eng., 34(4), 1260 (2017)
Moon JH, Lee CH, AIChE J., 53(12), 3125 (2007)
Moon JH, Bae JH, Han YJ, Lee CH, J. Membr. Sci., 356(1-2), 58 (2010)
He X, Nieto DR, Lindbrathen A, Hagg MB, Membrane System Design for CO2 Capture, Design, Control and Integration, 10249 (2017).
Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246 (2015)
Huang Y, Merkel TC, Baker RW, J. Membr. Sci., 463, 33 (2014)
Caravella A, Scura F, Barbieri G, Drioli E, J. Phys. Chem. B, 114(18), 6033 (2010)
Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356 (2011)
Gielens FC, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 289(1-2), 15 (2007)
Ward TL, Dao T, J. Membr. Sci., 153(2), 211 (1999)
Moon JH, Bae JH, Bae YS, Chung JT, Lee CH, J. Membr. Sci., 318(1-2), 45 (2008)
Yuan LX, Goldbach A, Xu HY, J. Phys. Chem. B, 111(37), 10952 (2007)
Howard BH, Killmeyer RP, Rothenberger KS, Cugini AV, Morreale BD, Enick RM, Bustamante F, J. Membr. Sci., 241(2), 207 (2004)
Goldbach A, Yuan LX, Xu HY, Sep. Purif. Technol., 73(1), 65 (2010)
Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, AIChE J., 50(5), 1028 (2004)
Helling RK, Tester JW, Energy Fuels, 1, 417 (1987)
Kulprathipanja A, Alptekin GO, Falconer JL, Way JD, Ind. Eng. Chem. Res., 43(15), 4188 (2004)
Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
Lee SW, Park JS, Lee CB, Lee DW, Kim H, Ra HW, Kim SH, Ryi SK, Energy, 66, 635 (2014)