ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 19, 2018
Accepted February 11, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improved photoluminescence and monodisperse performance of colloidal CdTe quantum dots with Cannula method

Dept. of Electrical & Electronics Engineering, Duzce University, Duzce, Turkey 1Dept. of Environmental Engineering, Duzce University, Duzce, Turkey 2Dept. of Electrical & Electronics Engineering, Istanbul Aydın University, Istanbul, Turkey
erdemelibol@duzce.edu.tr
Korean Journal of Chemical Engineering, April 2019, 36(4), 625-634(10), 10.1007/s11814-019-0243-9
downloadDownload PDF

Abstract

Colloidal quantum dots are nano semiconductor materials that have been found in many applications, producing multiple exciton generation, unique optical and electronic properties, adjustable in size and bandwidth. Synthesized QDs are expected to exhibit high photoluminescence quantum yield and monodisperse properties according to their application area. Cannula method was adapted together with the organometallic synthesis method for the first time in the literature to increase the photoluminescence quantum yield of organometallic CdTe QD and minimize the full width at half maximum value of the photoluminescence band. Injection of precursors by the Cannula method is much faster than the injecting with the conventional method of using a glass syringe, which limits the size distribution in the solution during synthesis. In addition, the fastest injection method using Cannula method yields the shortest full width half maximum value of 27.20 nm for CdTe QDs in the literature. The photoluminescence quantum yield value of the CdTe QDs synthesized by the classical method was 8.12±2.1%, while the photoluminescence quantum yield of the CdTe QDs synthesized by the Cannula method was increased to 25.66±2.1%.

References

Fang Z, Liu L, Xu L, Yin X, Zhong X, Nanotechnology, 19 (2008)
Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B, Chem. Mater., 23, 4857 (2011)
Shavel A, Gaponik N, Eychmuller A, J. Phys. Chem. B, 110(39), 19280 (2006)
Wuister SF, Swart I, van Driel F, Hickey SG, de Mello Donega C, Nano Lett., 3, 503 (2003)
Yang Y, Zhang C, Qu X, Zhang W, Marus M, Xu B, Wang K, Sun XW, IEEE Trans. Nanotechnol., 18, 220 (2019)
Ma Q, Su X, Appl. Spectrosc. Rev., 51, 162 (2016)
Sharma D, Jha R, Kumar S, Sol. Energy Mater. Sol. Cells, 155, 294 (2016)
Kim Y, Chang JY, Sens. Actuators B-Chem., 234, 122 (2016)
Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y, BioImpacts, 4, 149 (2014)
Peng ZA, Peng XG, J. Am. Chem. Soc., 123(1), 183 (2001)
Wang J, Long Y, Zhang Y, Zhong X, Zhu L, ChemPhysChem., 10, 680 (2009)
Wang Y, Liu S, J. Chil. Chem. Soc., 57, 1109 (2012)
Shi JJ, Wang S, He TT, Abdel-Halim ES, Zhu JJ, Ultrason. Sonochem., 21, 493 (2014)
Li L, Qian H, Ren J, Chem. Commun., 528 (2005).
Li YS, Jiang FL, Xiao Q, Li R, Li K, Zhang MF, Zhang AQ, Sun SF, Liu Y, Appl. Catal. B: Environ., 101(1-2), 118 (2010)
Kniprath R, Rabe JP, McLeskey JT, Wang DY, Kirstein S, Thin Solid Films, 518(1), 295 (2009)
Lan GY, Yang Z, Lin YW, Lin ZH, Liao HY, Chang HT, J. Mater. Chem., 19, 2349 (2009)
Birkmire RW, McCandless BE, Curr. opin. Solid State Mat. Sci., 14, 139 (2010)
Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL, Sol. Energy, 77(6), 823 (2004)
Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR, J. Fluoresc, 17, 149 (2007)
Liu YF, Yu JS, J. Colloid Interface Sci., 351(1), 1 (2010)
Kumar BJ, Mahesh HM, Superlattices Microstruct., 104, 118 (2017)
Lee JB, Chen HX, Koh KN, Chang CL, Kim CM, Kim SH, Korean J. Chem. Eng., 26(2), 417 (2009)
Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J, Compos. Commun., 10, 68 (2018)
Huangfu Y, Liang C, Han Y, Qiu H, Song P, Wang L, Kong J, Gu J, Compos. Sci. Technol., 169, 70 (2019)
Yang X, Ren F, Wang Y, Ding T, Sun H, Ma D, Sun XW, Sci. Rep., 7 (2017).
Somers RC, Bawendi MG, Nocera DG, Chem. Soc. Rev., 36, 579 (2007)
Hwang I, Seol M, Kim H, Yong K, Appl. Phys. Lett., 103 (2013)
Page RC, Espinobarro-Velazquez D, Leontiadou MA, Smith C, et al., Small, 11, 1548 (2015)
Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Sci., 30, 545 (2000)
Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H, J. Phys. Chem. B, 105(12), 2260 (2001)
Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H, J. Phys. Chem. B, 106(29), 7177 (2002)
Li L, Qian H, Fang N, Ren J, J. Lumines., 116, 59 (2006)
Ge C, Xu M, Liu J, Lei J, Ju H, Chem. Commun., 450 (2008).
Tian JN, Liu RJ, Zhao YC, Xu Q, Zhao SL, J. Colloid Interface Sci., 336(2), 504 (2009)
Elibol E, Cadırcı M, Tutkun N, Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method, in: Int. Conf. Quantum Dots (ICQD 2017), France/Paris (2017).
Frenette LC, Krauss TD, Nat. Commun, 8 (2017)
Planells M, Reynolds LX, Bansode U, Chhatre S, Ogale S, Robertson N, Haque SA, Phys. Chem. Chem. Phys., 15, 7679 (2013)
Pitois O, Moucheront P, Chateau X, J. Colloid Interface Sci., 231(1), 26 (2000)
Allen MW, Measurement of Fluorescence Quantum Yields, Thermo Sci., 1 (2010).
Ding XF, Wen LJ, Zhou X, Ding YY, Ye XC, Zhou L, Liu MC, Cai H, Cao J, Chinese Phys. C, 39 (2015)
Forster H, Mol. Sieves, 4, 337 (2004)
Klimov VI, Science, 290, 314 (2000)
Guclu AD, Potasz P, Hawrylak P, Phys. Rev. B, 82 (2010)
Yu WW, Wang YA, Peng X, Chem. Mater., 15, 4300 (2003)
Lu ZS, Guo CX, Yang HB, Qiao Y, Guo J, Li CM, J. Colloid Interface Sci., 353(2), 588 (2011)
Zhu J, Wang SN, Li JJ, Zhao JW, J. Lumines., 199, 216 (2018)
Shockley W, Queisser HJ, J. Appl. Phys., 32, 510 (1961)
Kalnaityte A, Bagdonas S, Rotomskis R, J. Lumines., 201, 434 (2018)
Yu ZH, Li JB, O'Connor DB, Wang LW, Barbara PF, J. Phys. Chem. B, 107(24), 5670 (2003)
Steckel JS, Colby R, Liu W, Hutchinson K, Breen C, Ritter J, Coe-Sullivan S, Dig. Tech. Pap. - SID Int. Symp., 44, 943 (2013)
Li F, You L, Li H, Gu X, Wei J, Jin X, Nie C, Zhang Q, Li Q, J. Lumines., 192, 867 (2017)
Zhang Y, J. Lumines., 192, 1015 (2017)
Amelia M, Lincheneau C, Silvi S, Credi A, Chem. Soc. Rev., 41, 5728 (2012)
He R, You X, Tian H, Gao F, Cui D, Front. Chem. China., 3, 325 (2008)
Arivarasan A, Bharathi S, Vijayaraj V, Sasikala G, Jayavel R, J. Inorg. Organomet. Polym., 28, 1263 (2018)
Ayyaswamy A, Ganapathy S, Alsalme A, Alghamdi A, Ramasamy J, Superlattices Microstruct., 88, 634 (2015)
Ribeiro DSM, de Souza GCS, Melo A, Soares JX, Rodrigues SSM, Araujo AN, Montenegro MCBSM, Santos JLM, J. Mater. Sci., 52(6), 3208 (2017)
Bao H, Wang E, Dong S, Small, 2, 476 (2006)
Lesnyak V, Voitekhovich SV, Gaponik PN, Gaponik N, Eychmuller A, ACS Nano., 4, 4090 (2010)
Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich YP, JF, J. Phys. Chem. C., 111, 14628 (2007)
Kiprotich S, Onani MO, Dejene FB, Phys. B Condens. Matter., 535, 202 (2018)
Bailey RE, Nie SM, J. Am. Chem. Soc., 125(23), 7100 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로