Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 30, 2018
Accepted March 1, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Flocculation kinetics and dewatering studies of quaternized cellulose derived from oil palm empty fruit bunches
Safia Syazana Mohtar1
Norasikin Saman1
Ahmad Mujahid Md Noor1
Tengku Nur Zulaikha Tengku Malim Busu1
Nor Aida Yusoff2
Hanapi Mat1 3†
1Advanced Materials and Process Engineering Laboratory, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia 2Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Unicity Sg. Chuchuh Campus, 02100 Padang Besar, Perlis, Malaysia 3Advanced Materials and Separation Technologies (AMSET) Research Group, Health and Wellness Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Korean Journal of Chemical Engineering, May 2019, 36(5), 669-677(9), 10.1007/s11814-019-0250-x
Download PDF
Abstract
Flocculation kinetics and sludge dewatering of kaolin suspension as influenced by various q-EFBC flocculant dosing were studied. In this study, 62.5mg L-1 q-EFBC exhibited the highest turbidity removal efficiency of 99.53∂ 0.08%. The adsorption rate of kaolin towards 12.5mg L-1 to 112.5mg L-1 q-EFBC dosing increased rapidly for t<60 s and became gradual before completion. The mass transfer coefficient was independent of dosage. The experimental data best-fitted the non-linear pseudo-first order due to the R2>0.99 and the lowest standard deviation. The highest rate constant of particle aggregation and breakage was consistent with the highest rate constant of particle collision, which led to the highest turbidity removal at the optimal dosage. The rate-limiting steps in the flocculation process were particle collision and aggregation since their rate constant was lower than the other kinetic constants. The lower values of SRF and TTF of treated sludge as compared to the untreated one confirmed the improvement in the dewaterability characteristic. The lowest TTF (37.44 ± 1.44 s) and SRF (1.49 x 010 m kg-1) was observed for 62.5mg L-1 q EFBC. The high turbidity removal nd improved sludge dewaterability indicate the potential application of q-EFBC for water treatment.
References
Hogg R, Int. J. Miner. Process., 58, 223 (2000)
Pal G, Sen S, Ghosh S, Singh RP, Carbohydr. Polym., 87, 336 (2012)
Khiari R, Dridi-Dhaouadi S, Aguir C, Mhenni MF, J. Environ. Sci., 22, 1539 (2010)
Beltran-Heredia J, Sanchez-Martin J, J. Hazard. Mater., 164(2-3), 713 (2009)
Tripathy J, Mishra DK, Srivastava A, Mishra MM, Behari K, Carbohydr. Polym., 72, 462 (2008)
Liimatainen H, Sirvio J, Sundman O, Visanko M, Hormi O, Niinimaki J, Bioresour. Technol., 102(20), 9626 (2011)
Song YB, Zhang J, Gan WP, Zhou JP, Zhang LN, Ind. Eng. Chem. Res., 49(3), 1242 (2010)
Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Yusoff NA, Yunus MAC, Mat H, Clean Technol. Environ., 19, 191 (2017)
Kono H, Resour. Eff. Technol., 3, 55 (2017)
Yang Z, Ren K, Guibal E, Jia S, Shen J, Zhang X, Yang W, Chemosphere, 161, 482 (2016)
Rasteiro MG, Pinheiro I, Ahmadloo H, Hunkeler D, Garcia FAP, Ferreira P, Wandrey C, Chem. Eng. Res. Des., 95, 298 (2015)
Chen YX, Liu SY, Wang GY, Chem. Eng. J., 133(1-3), 325 (2007)
Gregory J, in: Encyclopedia of colloid and interface science, Ed.), Springer, Berlin, Heidelberg (2013).
Ding C, Li Y, Wang Y, Li J, Sun Y, Lin Y, Sun W, Luo C, Int. J. Biol. Macromol., 107, 957 (2018)
Kacprzak M, Neczaj E, Fijałkowski K, Grobelak A, Grosser A, Worwag M, Rorat A, Brattebo H, Almas A, Singh BR, Environ. Res., 156, 39 (2017)
Wei H, Gao B, Ren J, Li A, Yang H, Water Res., 143, 608 (2018)
Christensen ML, Keiding K, Nielsen PH, Jørgensen MK, Water Res., 82, 14 (2015)
Qi Y, Thapa KB, Hoadley AFA, Chem. Eng. J., 171(2), 373 (2011)
Tuan PA, Mika S, Pirjo I, Dry. Technol., 30, 691 (2012)
To VHP, Nguyen TV, Vigneswaran S, Ngo HH, Water Sci. Technol., 74, 1 (2016)
Liu BT, Song HY, Li YX, Adv. Mater. Res., 383, 3134 (2012)
Kuutti L, Haavisto S, Hyvarinen S, Mikkonen H, Koski R, Peltonen S, Suortti T, Kyllonen H, Bioresources, 6, 2836 (2011)
Wang JP, Yuan SJ, Wang Y, Yu HQ, Water Res., 47, 2643 (2013)
Suopajarvi T, Sirvio JA, Liimatainen H, J. Environ. Chem. Eng., 5, 86 (2017)
Zhou K, Stuber J, Schubert RL, Kabbe C, Barjenbruch M, Water Sci. Technol., 77, 7 (2017)
Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H, Carbohydr. Polym., 166, 291 (2017)
Gregory J, Barany S, Adv. Colloid Interface Sci., 169, 1 (2011)
Hema M, Arivoli S, J. Appl. Sci. Environ. Manage., 12, 43 (2008)
Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H, J. Environ. Chem. Eng., 4, 2487 (2016)
Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, Rivera-Utrilla J, Sanchez-Polo M, Chem. Eng. J., 165(1), 133 (2010)
Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, Water Res., 120, 88 (2017)
Bergmann CP, Machado F, Carbon nanomaterials as adsorbents for environmental and biological applications, Springer International Publishing, Switzerland (2015).
Kumar KV, J. Hazard. Mater., 137(3), 1538 (2006)
Lick W, Sediment and contaminant transport in surface waters, CRC Press, Boca Raton (2009).
Gregory J, Particles in water: Properties and processes, CRC Press, Boca Raton (2006).
Das KK, Somasundaran P, J. Colloid Interface Sci., 271(1), 102 (2004)
Jarvis P, Jefferson B, Parsons SA, Rev. Environ. Sci. Biotechnol., 4, 1 (2005)
Besra L, Sengupta DK, Roy SK, Int. J. Miner. Process., 59(2), 89 (2000)
Wang HF, Hu H, Wang HJ, Zeng RJ, Sci. Total Environ., 643, 1065 (2018)
Pal G, Sen S, Ghosh S, Singh RP, Carbohydr. Polym., 87, 336 (2012)
Khiari R, Dridi-Dhaouadi S, Aguir C, Mhenni MF, J. Environ. Sci., 22, 1539 (2010)
Beltran-Heredia J, Sanchez-Martin J, J. Hazard. Mater., 164(2-3), 713 (2009)
Tripathy J, Mishra DK, Srivastava A, Mishra MM, Behari K, Carbohydr. Polym., 72, 462 (2008)
Liimatainen H, Sirvio J, Sundman O, Visanko M, Hormi O, Niinimaki J, Bioresour. Technol., 102(20), 9626 (2011)
Song YB, Zhang J, Gan WP, Zhou JP, Zhang LN, Ind. Eng. Chem. Res., 49(3), 1242 (2010)
Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Yusoff NA, Yunus MAC, Mat H, Clean Technol. Environ., 19, 191 (2017)
Kono H, Resour. Eff. Technol., 3, 55 (2017)
Yang Z, Ren K, Guibal E, Jia S, Shen J, Zhang X, Yang W, Chemosphere, 161, 482 (2016)
Rasteiro MG, Pinheiro I, Ahmadloo H, Hunkeler D, Garcia FAP, Ferreira P, Wandrey C, Chem. Eng. Res. Des., 95, 298 (2015)
Chen YX, Liu SY, Wang GY, Chem. Eng. J., 133(1-3), 325 (2007)
Gregory J, in: Encyclopedia of colloid and interface science, Ed.), Springer, Berlin, Heidelberg (2013).
Ding C, Li Y, Wang Y, Li J, Sun Y, Lin Y, Sun W, Luo C, Int. J. Biol. Macromol., 107, 957 (2018)
Kacprzak M, Neczaj E, Fijałkowski K, Grobelak A, Grosser A, Worwag M, Rorat A, Brattebo H, Almas A, Singh BR, Environ. Res., 156, 39 (2017)
Wei H, Gao B, Ren J, Li A, Yang H, Water Res., 143, 608 (2018)
Christensen ML, Keiding K, Nielsen PH, Jørgensen MK, Water Res., 82, 14 (2015)
Qi Y, Thapa KB, Hoadley AFA, Chem. Eng. J., 171(2), 373 (2011)
Tuan PA, Mika S, Pirjo I, Dry. Technol., 30, 691 (2012)
To VHP, Nguyen TV, Vigneswaran S, Ngo HH, Water Sci. Technol., 74, 1 (2016)
Liu BT, Song HY, Li YX, Adv. Mater. Res., 383, 3134 (2012)
Kuutti L, Haavisto S, Hyvarinen S, Mikkonen H, Koski R, Peltonen S, Suortti T, Kyllonen H, Bioresources, 6, 2836 (2011)
Wang JP, Yuan SJ, Wang Y, Yu HQ, Water Res., 47, 2643 (2013)
Suopajarvi T, Sirvio JA, Liimatainen H, J. Environ. Chem. Eng., 5, 86 (2017)
Zhou K, Stuber J, Schubert RL, Kabbe C, Barjenbruch M, Water Sci. Technol., 77, 7 (2017)
Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H, Carbohydr. Polym., 166, 291 (2017)
Gregory J, Barany S, Adv. Colloid Interface Sci., 169, 1 (2011)
Hema M, Arivoli S, J. Appl. Sci. Environ. Manage., 12, 43 (2008)
Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H, J. Environ. Chem. Eng., 4, 2487 (2016)
Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, Rivera-Utrilla J, Sanchez-Polo M, Chem. Eng. J., 165(1), 133 (2010)
Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, Water Res., 120, 88 (2017)
Bergmann CP, Machado F, Carbon nanomaterials as adsorbents for environmental and biological applications, Springer International Publishing, Switzerland (2015).
Kumar KV, J. Hazard. Mater., 137(3), 1538 (2006)
Lick W, Sediment and contaminant transport in surface waters, CRC Press, Boca Raton (2009).
Gregory J, Particles in water: Properties and processes, CRC Press, Boca Raton (2006).
Das KK, Somasundaran P, J. Colloid Interface Sci., 271(1), 102 (2004)
Jarvis P, Jefferson B, Parsons SA, Rev. Environ. Sci. Biotechnol., 4, 1 (2005)
Besra L, Sengupta DK, Roy SK, Int. J. Miner. Process., 59(2), 89 (2000)
Wang HF, Hu H, Wang HJ, Zeng RJ, Sci. Total Environ., 643, 1065 (2018)